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Abstract. Model management is a metadata-based approach to data-
base problems aimed at supporting the productivity of developers by
providing schema manipulation operators.
Here we propose MISM (Model Independent Schema Management), a
platform for model management offering a set of operators to manipu-
late schemas, in a manner that is both model-independent (in the sense
that operators are generic and apply to schemas of different data mod-
els) and model-aware (in the sense that it is possible to say whether a
schema is allowed for a data model). This is the first proposal for model
management in this direction.
We consider the main operators in model management: merge, diff, and
modelgen. These operators play a major role in solving various problems
related to schema evolution (such as data integration, data exchange
or forward engineering), and we show in detail a solution to a major
representative of the class, the round-trip engineering problem.

Key words: model management, model management operators, round-
trip engineering, model-independent schema and data translation

1 Introduction

The need for complex transformations of data arises in many different contexts,
because of the presence of multiple representations for the same data or of mul-
tiple sources that need to coexist or to be integrated [11, 18, 20]. A major goal of
technology in the database field is to enhance the productivity of software devel-
opers, by offering them high-level features that support repetitive tasks. This has
been stressed since the introduction of the relational model, with the emphasis on
set-oriented operations [12, 13], but it was pursued, at least implicitly, in earlier
developments of generalized techniques [22]. The model management proposal [7,
8] is a recent, significant effort in this direction: its goal is the development of
techniques that consider metadata and operations over them. More precisely, a
model management system [11] should handle schemas and mappings between
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them by means of operators supporting operations to discover correspondences
between schemas (match), performing the most common set-oriented operations
(such as union of schemas, merge, and difference of schemas, diff) and trans-
lating them from a data model to another (modelgen). These operations should
be specified at a high level, on schemas and mappings, and should allow for the
(support to the) generation of data-level transformations. Many application ar-
eas can benefit from the use of model management techniques, including data
integration over heterogeneous databases, data exchange between independent
databases, ETL (Extract, Transform, Load) in data warehousing, wrapper gen-
eration for the access to relational databases from object-oriented applications,
dynamic Web site generation from databases.

Most of the work in model management has considered the need for model
independence, that is, the fact that the techniques do not refer to individual data
models,1 but are more general. In detail, this requires that a single implementa-
tion of the operators should fit (i.e. be applicable) to any schema regardless of
the specific data model it belongs to. This has usually been done by adopting
some “universal data model,” a model that is more general than the various
models of interest in a heterogeneous framework. In the literature, such a data
model is called universal metamodel [11] or supermodel [3, 6]. If the operations of
interest also include translations from a data model to another (the modelgen
operator), it is important that the individual data models are represented, in
such a way that it becomes possible to describe the fact that a schema belongs
to a data model. We will call this property model-awareness. The various pro-
posals for modelgen [3, 6, 25, 26] do include the model independence feature,
to a larger or lesser extent. For the other operators, the major efforts in the
model management area (as summarized by Bernstein and Melnik [11]) do not
handle the explicit representation of data models nor generic definitions of the
operators.

The goal of this paper is to show a model independent and model aware
approach to model management, thus providing concrete details to Bernstein’s
original proposal [8] and contributing to support its feasibility.

In the rest of this introductory section we first discuss two motivating ex-
amples, then we provide an overview of the approach and finally we state the
contribution of the paper and the organization of the rest of it.

1.1 Motivating examples

In order to have a context for specific examples and a complete solution, we
will refer to the “round-trip engineering” problem [8], which can be defined as
follows: given two schemas, where the second is somehow obtained from the first
(for example, generated in a semiautomatic way, with standard rules partially
overridden by human intervention), the problem has the goal of “repairing”

1 There is some disagreement on terminology in the literature: we use the term data
model here for what is often called just model [3, 6] and in other papers meta-
model [11].
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the first if the second is modified. This problem is often considered in model
management papers [8] as a representative of the “schema evolution” family.
These problems arise in all application settings and therefore can be used to
demonstrate the effectiveness of model management, in terms of both individual
operators and compositions of them.

Let us consider an example derived from an academic scenario (see Figure 1):
a university has various schools and one of them has a relational database with a

Fig. 1. The round-trip engineering problem

portion containing all the information of interest about its departments, courses,
and professors. Its schema is shown in the box labeled S1 in Figure 1. It is com-
posed of three tables, Professor, Course, and Department. Apart from the specific
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attributes, each relation has a key, denoted by the “ID” suffix and underlined
in the figure. As each course is offered by a specific department and given by a
professor, there are foreign keys from Course to the other two tables, denoted
by arrows in the figure.

Assume now that this portion of the database is used (together with other
goals) as the source to send data on courses to a central office in the university,
which gathers data from all schools. This office requires data in an XML format,
which is the one sketched in the box labeled I1 in Figure 1. There is indeed a
close correspondence between S1 and I1 (possibly because they were designed
together). In fact, I1 can be obtained by means of a nesting operation based
on departments, each with the associated set of courses and with the instructor
for each course. Clearly, this is one natural way to transform the relational
data in S1 into XML, but not the only one, as there would be other solutions
that involve course or professor as the root. In this sense, we can say that this
is not the result of an automated translation, but of a customization, that is, a
choice among a few standard alternatives. Let us also observe that in S1 we have
attributes FirstName and LastName for Professor, whereas in I1 we have the
element FullName. There could be various reasons for this, but the only aspect
relevant here is that, again, the transformation has been customized, with the
concatenation of the two attributes in S1 into a single element in I1.

Then, assume that the exchange format is modified, with a new version, I2,
also shown in Figure 1. There are a few differences between I2 and I1. First, we
have that Address is a simple element in I1, while it is a complex element in I2,
composed of Street, Zip, and City. The second, and most important, difference
is the presence of a complex element Section nested in Course and containing
Professor. A course can be composed of various sections. Each section has a
single professor, and therefore Professor, which in I1 was directly contained in
Course, is part of Section. Each section of a course takes place in a different
room so the element Room is now in Section.

Now, the goal is to obtain a schema in the relational model (for example
the one shown in the box labeled S2 in Figure 1) that properly corresponds
to S1 as modified by the changes in I2. It should be clear that S2 cannot be
obtained by applying to I2 a standard, automatic translation from XML to the
relational model (an application of the modelgen operator), because we could
not keep track of the customizations we mentioned above. The idea for a solu-
tion to this problem was proposed by Bernstein [8], in terms of a script of model
management operators, using diff to compute differences, modelgen to trans-
late and merge to integrate. Intuitively, we have to detect the actual differences
between the original and the modified target schemas I1 and I2 respectively.
Then we have to translate these differences back to the specification model (in
our case the relational one) and finally integrate the translated differences with
the original specification S1 obtaining a revised specification S2. The require-
ment is that we should obtain I2, if we apply to S2 the sequence of translations
and customizations used to obtain I1 from S1. With reference to our example,
applying the sequence of operators as described in the algorithm, we produce in-
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deed the relational schema illustrated in the box labeled S2 in Figure 1. Schema
S2 includes new tables Section and Address corresponding to the new complex
elements in I2. Department has a foreign key to Address and Section to Course.
Also, attribute Room is in Section and not anymore in Course.

In the existing literature, the proposals for the various operators are not
general and accurate enough, as they refer to a rather limited set of models and
do not have features that support the description of models, and so the plan
proposed by Bernstein has not yet been implemented in a general way.

The goal of this paper is to show that this plan can indeed be made concrete,
in a model-independent and model-aware way, which works for many different
models but performs the translations knowing the specific features of the models
of interest.

With the twofold goal of using a different model and of presenting a simpler
example, let us consider another scenario. Let us assume we have a high level
specification tool that translates ER schemas into relational tables by generating
appropriate SQL DDL, allowing some customization. Again, if changes are made
to the SQL implementation, then we want them to be propagated back to the ER
specification. This is illustrated in Figure 2, where S1 represents a specification in
the ER model and I1 represents its relational implementation. The customization
in the translation produces two columns FName and LName in I1 for the single
attribute Name in S1. Then, if I1 is modified to a new version I2, the latter is
not coherent with S1. The main difference between I2 and I1 is in the key for the
Manager table and, as a consequence, in the foreign key structure that refers to
it. Also, Manager has a new attribute, Title. The goal is to find a specification
S2 from which I2 could be generated, in the same semiautomatic way as I1 was
obtained from S1. Indeed, what we want to obtain is an ER schema S2, which
differs from the original one in the attributes of the entity Manager : the identifier
is EID instead of SSN and there is the new attribute Title.

In the remainder of the paper we will follow this second example, which will
allows us to explain completely our approach, without taking too much space.

1.2 Overview of the approach

The solution we propose in this paper includes a definition and implementation
of the major model management operators (diff, merge, and modelgen).
It is based on our experience in the MIDST platform [3–5], where a model-
independent approach for schema and data translation was introduced (with
a generic implementation of the modelgen operator). MIDST adopts a met-
alevel approach in which the artifacts of interest are handled in a repository
that represents data models, schemas, and databases in an integrated way, both
model-independent and model-aware. This is a fundamental starting point, as
stated before, in order to be able to define a model management system. This
repository is implemented as a multilevel dictionary. Data models are defined in
terms of the constructs they involve. A schema of a specific data model is allowed
to use only the constructs that are available for that model. In this framework,
the supermodel is the model that includes the whole range of constructs, so that
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Fig. 2. A simple scenario for the round-trip engineering problem

every schema in every model is also a schema in the supermodel. Then, all trans-
lations are performed within the supermodel, in order to scale with respect to
the size of the space of models [5]. In this paper, we show how the dictionary
and the supermodel provide grounds for the model-independent definition of the
other operators of interest, namely merge and diff.

In MIDST, translations are obtained as the composition of basic steps each
of which is written as a Datalog program. The language was chosen for two
reasons: first, it matches in an effective way the structure of our data model
and dictionary (which is implemented in relational form); second, its high level
of abstraction and the declarative form allow for a clear separation between
the translations and the engine that executes them. Moreover, Datalog can be
straightly translated into SQL and the original choice was aimed at covering the
widest spectrum of application scenarios. However, other syntax or specification
formalisms could be adopted as well.

Here we propose a general model management platform, MISM (Model In-
dependent Schema Management), which is based on MIDST but extends it in a
significant way. We start from MIDST’s representation for data models, schemas,
and databases and define model management operators by means of Datalog
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programs with respect to such representation. Specifically, we leverage on the
features of MIDST’s dictionary for the uniform representation of models as well
as the infrastructure for the definition and the application of schema manipula-
tion operators. MISM offers all the major operators, including merge, diff, and
a basic version of match, all implemented in a model-generic way. The structure
of the dictionary also allows for the automatic generation of Datalog programs
implementing the new operators, with respect to the given supermodel, in such a
way that, if the supermodel were extended, the operators would be automatically
extended as well.

1.3 Contribution

To the best of our knowledge, this is the first proposal for a model-independent
platform for model management. Specifically, this paper offers three main con-
tributions:

– The model-independent definition and implementation of important model
management operators. In fact, we define them by means of programs with
predicates acting on the constructs of the supermodel.

– The automatic generation of the programs implementing the operators only
using the supermodel as input. These programs are valid for any schema
defined in terms of model-generic constructs.

– A complete solution to the round-trip engineering problem as a representa-
tive of the problems that can be solved with this approach. It is based on
a script defined in terms of a convenient combination of our operators and
allows a walk through of our implementation.

1.4 Organization of the paper

In Section 2 we describe how models, schemas and translations are dealt with
in MIDST. In particular we describe schema representation within MIDST met-
alevel. We illustrate how model-independent transformations can be performed
in the framework.

Then in Section 3 we illustrate in detail model management operators in
MISM, the extension of MIDST we propose here, and present their definitions.
Discussion on their model-independence and model-awareness is provided. As a
consequence, in Section 4 we show possible Datalog implementations for these
operators satisfying the specifications of the previous section.

Section 5 presents a solution of the round-trip engineering problem in terms
of our operators and shows how MISM can be used to solve this problem. A
concrete scenario of solution, addressing the problem introduced in Figure 2 is
then provided.

Finally, Section 6 discusses related work and Section 7 concludes the paper.
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2 Models, schemas, and translations in MIDST

This section presents the needed background, with a discussion of the relevant
features of our previous project, MIDST [3, 5], whose goal was to provide a
generic version of the modelgen operator, which can be defined as follows:
given a source schema S expressed in a source model, and a target model TM,
modelgen generates a schema S′ expressed in TM that is “equivalent” (ac-
cording to a suitable definition) to S. MIDST obtains model-independence and
model-awareness by means of the adoption of a rich dictionary, which stores
models, schemas and data in a uniform and coordinated way. In this paper,
we leverage on MIDST from two points of view: first, we show definitions and
implementations of additional operators, merge and diff, and it is again the
organization of the dictionary that supports model-independence and model-
awareness; second, modelgen is used in the scripts we propose, together with
the new operators. Hence both MIDST dictionary and its implementation of
the modelgen operator are part of the new model management platform we
propose in this paper.

MIDST adopts a model-generic representation of schemas based on a combi-
nation of constructs. Its founding observation is the similarity of features which
arises across different data models. This means that all the existing models can
be represented with a rather small set of general purpose constructs [21] called
metaconstructs (or simply constructs when no ambiguity arises). Let us briefly
illustrate this idea. Consider the concept of entity in the ER model family and
that of class in the OO world: they both have a name, a collection of properties
and can be in some kind of relationship between one another. To a greater ex-
tent, it is easy to generalize this observation to any other construct of the known
models and determine a rather small set of general constructs. Therefore models
are defined as sets of constructs from a given universe, in which every construct
has a specific name (such as “entity” or “object”): for instance a simple version
of the ER model may be composed of Abstracts (the entities), Aggregations
of Abstracts (the relationships) and Lexicals referring to Abstracts (attributes
of entities); instead the relational model could have Aggregations (the tables),
Lexicals referring to Aggregations (the columns), and foreign keys specified over
finite sets of Lexicals. Thus schemas are collections of actual constructs (schema
elements) related to one another. Figure 3 lists the metaconstructs used in the
current version of MIDST [5] and the corresponding specific constructs we have
in various popular (families of) data models.

As we said in the introduction, the set of all the possible constructs in MIDST
forms the supermodel, a major concept in our framework. It represents the most
general model, such that any other model is a specialization of it (since a subset
of its constructs). Hence a schema S of a model M is necessarily a schema of
the supermodel as well.

MIDST manages the information of interest in a rich dictionary. Its details
have been described elsewhere [2] and are beyond the scope of this paper. Let
us summarize its main features. It has two layers, both implemented in the
relational model: a basic level and a metalevel.
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Metaconstruct Relational Object- ER XSD
Relational

Abstract - typed entity root
table element

Lexical column column attribute simple
element

BinaryAggregationOf- - - binary -
Abstracts relationship

AbstractAttribute - reference - -

Generalization - generalization generalization -

Aggregation table table - -

ForeignKey foreign foreign - foreign
key key key

StructOfAttributes - structured - complex
column element

Fig. 3. Simplified representation of MIDST metamodel

The basic layer of the dictionary has a model-specific part (some tables of
which are shown in Figure 4 with reference to our running example), where
schemas are represented with explicit reference to the various models, and, more
important, a model-generic one, where there is a table for each construct in the
supermodel: so there is a table for sm Abstract (the sm prefix emphasizes
the fact that we are in the supermodel portion of the dictionary), a table for
sm Aggregation and so on (with an example in Figure 5). These tables have
a column for each property of interest for the construct (for example, a Lexical
can be part of the identifier of the corresponding Abstract, or not, and this is
described by means of a boolean property). References are used to link constructs
to one another, and so the tables in the dictionary have fields with foreign
keys connecting them to each other. For example, the sm Lexical table has an
attribute that contains references to sm Abstract, to represent the fact that
a Lexical (for example an attribute of entity in the ER model) has to belong
to a parent construct, which could be an Abstract (an entity). In both parts,
constructs are organized in such a way they guarantee the acyclicity constraint,
meaning that no cycles of references are allowed between them. This is convenient
in situations where a complete navigation through the schemas is necessary and
a topological order is helpful.

The two parts of the dictionary play complementary roles in the translation
process, which is MIDST’s main goal: the model specific part is used to interact
with source and target schemas and databases, whereas the supermodel part is
used to perform translations, by referring only to constructs, regardless of how
they are used in the individual models. This allows for model-independence.

In fact, every translation in MIDST is composed of three phases: first, the
source schema, expressed in a specific source model, is copied into the super-
model; second, the actual translation is carried out in the supermodel environ-
ment; finally, the result schema, which refers to the supermodel, but is compati-
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er Entity

OID Entity-Name Schema

e1 Project s1
e2 Manager s1
... ... ...

er AttributeOfEntity

OID Entity Att-Name Type isKey Schema

a1 e1 PCode int true s1
a2 e1 Title string false s1
a3 e2 SSN int true s1
a4 e2 EID int false s1
a5 e2 Name string false s1
... ... ... ... ... ...

er BinaryRelationship

OID Rel-Name Entity1 IsOptional1 IsFunctional1 Entity2 ... Schema

b1 R e1 false true e2 ... s1
... ... ... ... ... ... ... ...

rel Table

OID Table-Name Schema

t1 Project i1
t2 Manager i1
... ... ...

rel Column

OID Table Col-Name Type isKey Schema

c1 t1 PCode int true i1
c2 t1 Title string false i1
... ... ... ... ... i1
c7 t2 LName string false i1
... ... ... ... ... ...

Fig. 4. A portion of a model-specific representation of schemas S1 and I1 of Figure 2

sm Abstract

OID Abs-Name Schema

e1 Project s1
e2 Manager s1
... ... ...

sm Aggregation

OID Aggr-Name Schema

t1 Project i1
t2 Manager i1
... ... ...

sm Lexical

OID Abstract Aggr Lex-Name Type isId Schema

a1 e1 - PCode int true s1
a2 e1 - Title string false s1
a3 e2 - SSN int true s1
... ... ... ... ... ... ...
c1 - t1 PCode int true i1
... ... ... ... ... ... ...
c7 - t2 LName string false i1
... ... - ... ... ... ...

sm BinaryAggregationOfAbstracts

OID Agg-Name Abstract1 IsOptional1 IsFunctional1 Abstract2 ... Schema

b1 R e1 false true e2 ... s1
... ... ... ... ... ... ... ...

Fig. 5. A portion of a model-generic representation of the schemas S1 and I1 of Figure 2

ble with the target model, is copied into the target model itself. The translation
engine exploits a library of elementary translations, each of which is written as
a Datalog program, and combines them, on the basis of the specific source and
target model of interest.
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MIDST dictionary includes a higher layer, a metalevel, which gives a char-
acterization of the construct properties and relationships among them [2, 5]. It
involves few tables, each with few rows, which form the core of the dictionary. A
significant portion is shown in Figure 6. Its main table, named msm Construct
(here, the msm prefix denotes that we are in the “metasupermodel” world, as we
are describing the supermodel) stores the name and a unique identifier (OID) for
each construct, so this table actually memorizes every allowed construct; indeed,
the rows of this table correspond essentially to those in Figure 3. Each construct
is also characterized by a set of properties describing the details of interest. There
is a table, msm Property, reporting name, type and owner construct for each
property. The properties, for example, allow to define whether an entity attribute
is identifier or not and to specify the cardinality of relationships. Constructs refer
to one another with references, recorded in the table msm Reference.

msm-Construct

OID Construct-Name IsLex

mc1 Abstract false
mc2 Lexical true
mc3 BinaryAggregationOfAbstracts false
mc4 AbstractAttribute false
... ... ...

msm-Property

OID Prop-Name Constr Type

mp1 Abstract-Name mc1 string
mp2 Att-Name mc2 string
mp3 IsId mc2 bool
mp4 IsFunctional1 mc3 bool
mp5 IsFunctional2 mc3 bool
... ... ... ...

msm-Reference

OID Ref-Name Constr ConstrTo

mr1 Abstract mc2 mc1
mr2 Abstract1 mc3 mc1
mr3 Abstract2 mc3 mc1
... ... ... ...

Fig. 6. The supermodel part of the metalevel portion of the dictionary of MIDST

As we have illustrated, the metalevel lays the basis for the definition of con-
structs which can be then used in defining models and so on the structure of the
lower layer of the dictionary: in fact, the model-generic layer (Figure 5) has one
table for each row in msm Construct (and so we have, as we said, tables named
sm Abstract, sm Aggregation, sm Lexical, and so on), with columns cor-
responding to the properties and references of the construct, as described in
msm Property and msm Reference, respectively.

The aim of the following sections is to define operators on the basis of con-
structs in such a way that model-independent solutions to model management
problems can then be described. In fact, solutions will be formulated as scripts
involving the application of such operators. We will see that the structure of
the dictionary, especially with its metalevel, plays a major role in the automatic
generation of Datalog programs for the implementation of the operators.
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3 Operators

Model management, as we said in the introduction, refers to a wide range of prob-
lems, which share the need for high level solutions. Therefore many operators
have been proposed, depending on the family of problems of interest. Here we
concentrate on schema evolution, where proposals [8, 10] require match, diff
and merge and, if an explicit representation of models is needed, also mod-
elgen. In such proposals, the match operator is used to discover mappings
between the elements of the involved schemas. In fact, mappings play a major
role, as they provide the operators with essential information about the relation-
ships between the involved schemas. For example, an operator that computes the
difference between two schemas needs to know the correspondences between con-
structs in order to subtract them correctly. Likewise, an operator that combines
schemas must know those correspondences in order to avoid the generation of
duplicates. Here, exploiting our construct-based representation of data models,
we can propose definitions of the main operators (diff, merge, and modelgen)
that compare constructs on the basis of their names and structures. In fact, we
assume that if two constructs have different names or different structures, they
should be considered as different. In this way, as we clarify in the next subsection,
our approach considers match as complementary.

We already have an implementation for modelgen in our MIDST proposal
(and hence in MISM as well), and so we have to concentrate on diff and merge.
In the rest of this section we will present specifications for these operators that
refer to MIDST dictionary, preceded by the discussion of a preliminary notion,
equivalence of schema elements. Then, in Section 4 we will show how to generate
Datalog implementations for them.

3.1 Equivalence of schema elements

The basic idea behind the diff and merge operators is the set-theoretical one.
In fact, we can consider each schema as composed of a set of schema elements
(the actual constructs it involves), and then consider diff as a set-theoretic dif-
ference (the elements that are in the first schema and not in the second) and
merge as a union (the elements that are at least in one of the two schemas). In
general, we might be interested in comparing schemas that represent the con-
cepts of interest by means of different elements. In such a case, a preliminary step
would require the identification or specification of the correspondences between
them. This is usually done by means of an application of the match operator,
which, in general, can produce correspondences of various types (i.e. one-to-one,
one-to-many, or even many-to-many) and may require a human intervention in
order to disambiguate or to better specify. Besides, in MIDST context, let us
recall that each schema element is represented with respect to a specific model-
generic construct (i.e. an element refers to an Abstract, another one refers to
an Aggregation and so on): in this sense we say that an element is an instance
of a construct. Consequently, we distinguish between construct-preserving cor-
respondences and non construct-preserving ones. The first type maps elements,
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instances of a certain construct, only to elements that are instances of the same
model-generic construct; viceversa, correspondences not satisfying this property
belong to the second type. For example in the XML schemas of Figure 1 the cor-
respondence between the simple element Address and the complex one (again
called Address), composed of Street, Zip, and City, is not construct-preserving.
In fact the address is represented by a simple element in the first schema (i.e.
a Lexical in MIDST), while in the second one it requires a complex element
(i.e. a StructOfAttributes in MIDST) with its components (i.e. some Lexicals
in MIDST). Clearly, non construct-preserving correspondences denote different
ways to organize the data of interest and therefore the involved constructs of the
two schemas have to be considered as different. On the other hand, constructs
that have different names but the same structure while handling the same data,
have to be considered as equivalent. These are one-to-one correspondences, which
can be discovered manually or by means of a matching system (among the many
existing ones [27]).

The arguments above lead to a notion of renaming of a schema: given a
correspondence c, the renaming of a schema S with respect to c is a schema
where the names of the elements in S are modified according to c. Then, we
have a basic idea of equivalence conveyed by the following recursive statement:

two schema elements are equivalent with respect to a renaming if: (i) they are
instances of the same model-generic construct; (ii) their names are equal, after
the renaming; (iii) their features (names and properties) are equal; and (iv) they
refer to equivalent elements.

For the sake of simplicity, we can assume that the renaming is always applied
to one of the schemas, in order to guarantee that corresponding constructs with
the same type also have the same name. In some sense this would correspond to a
unique name assumption. Then, equivalence would be simpler, as name equality
would be required:

two schema elements are equivalent if their types, names and features are equal
and they refer to equivalent elements.

It is important to observe that the definition is recursive, as equivalence of
pairs of elements requires the equivalence of the elements they refer to. This is
well defined, because the structure of references in our supermodel is acyclic,
and therefore recursion is bounded. Let us consider few cases from our running
example, namely schemas I1 and I2 in Figure 2. We have a column Title for
a table Project in both schemas, and the two are equivalent, as they have the
same name, the same properties (they are both non-key), and refer to equivalent
elements (the tables named Project). Instead, the column Title of Project in I1

is not equivalent to Title of Manager in I2, because Project and Manager are
not equivalent. Also, the two columns named SSN are not equivalent, because
the one in I1 is key and that in I2 is not.
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3.2 Definitions of the operators

We are now ready to give our definitions and show some examples. According to
what we said in the previous section, we assume that suitable renamings have
been applied in such a way that a unique name assumption holds. We start with
a preliminary notion, to be revised shortly.

Given two schemas S and S′, the difference diff(S, S′) is a schema S′′ that
contains all the schema elements of S that do not appear in S′.

This first intuitive idea must be refined, otherwise some inconsistencies could
arise. In fact, it may be the case that a schema element appears in the result of a
difference while an element it refers to does not. This causes incoherent schemas
with “orphan” elements. With respect to the schemas in our running example,
this happens for the column MgrID in the difference diff(I2, I1), which belongs
to the result, while the table Project does not. Instead we want to have coherent
schemas, where references are not dangling.

In order to solve this difficulty, we modify our notion of a schema, by in-
troducing stub elements (similar to the support objects of [8]). Specifically, we
extend the notion of schema element, by allowing two kinds: proper elements
(or simply elements), those we have seen so far, and stub elements, which are
essentially fictitious elements, introduced to guarantee that required references
exist. We say that a schema is proper if all its elements are proper.

According to this technique, the result of diff(I2, I1) contains the stub ver-
sion of Project in order to avoid the missing reference of MgrID.

The definition of the difference should therefore be modified in order to take
into account stub elements both in the source schemas and in the result one.

Given S and S′, diff(S, S′) is a schema S′′ that contains: (i) all the schema
elements of S that do not appear in S′; (ii) stub versions for elements of S that
appear also in S′ (and so should not be in the difference) but are referred to by
other elements in diff(S, S′).

The notion is recursive, but well defined because of the acyclicity of our
references.

In the literature [8], the diff operator is often used in model management
scripts to detect which schema elements have been added to or removed from
a schema. Our definition addresses this target. Given an “old” schema S and
a “new” one S′, the “added” elements (also called the positive difference) can
be obtained as diff(S′, S) whereas the “removed” ones (the negative difference)
are given by diff(S, S′).

With respect to the running example in Figure 2, the negative difference,
diff(I1, I2), contains the columns MgrSSN of Project and SSN (key) and EID
(non-key) of Manager. Column MgrSSN belongs to the difference since it belongs
to I1 and there is no attribute with the same name in I2. Instead, EID and SSN
belong to diff(I1, I2) because the attributes with the same respective names in
I2 have properties that differ from those in I1: EID is key in I1 and not key in
I2, whereas the converse holds for SSN. The negative difference does not contain
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the two tables as proper elements, because they appear in both schemas, but
it needs them as stub elements because the various columns have to refer to
them. The negative difference also includes the foreign key in I1 since it does
not appear in I2 (the foreign key in I2 involves different columns).

Similarly, the positive difference includes the columns MgrID of Project and
SSN (non-key), EID (key) and Title of Manager, both tables as stub elements,
and the foreign key in I2.

An important observation is that the definition we have given here is model-
independent, because it refers to constructs as they are defined in our super-
model. At the same time, it is model-aware, because it is always possible to tell
whether a schema belongs to a model, on the basis of the types of the involved
schema elements. As a consequence, it is possible to introduce a notion of clo-
sure: we say that a model management operator O is closed with respect to a
model M if, whenever O is applied to schemas in M , then the result is a schema
in M as well. Given the various definitions, it follows that the difference is a
closed operator, because it produces only constructs that appear in its input
arguments.

Let us now turn our attention to the second operator of interest, merge. We
start again with a preliminary definition.

Given S and S′, their merge merge(S, S′) is a schema S′′ that contains the
schema elements that appear in at least one of S or S′, modulo equivalence.2

It is clear that merge is essentially a set-theoretic union between two schemas,
with the avoidance of duplicates managed by means of the notion of equivalence
of schema elements.

Since our schemas might involve stub elements, as we saw above, let us
consider their impact on this operator. Clearly, the operator cannot introduce
new stub elements, as it only copies elements. However, stubs can appear in
the input schemas, and the delicate case is when equivalent elements appear in
schemas, proper in one and stub in the other.3

Given S and S′, their merge merge(S, S′) is a schema S′′ that contains the
schema elements that appear in at least one of S or S′, modulo equivalence. An
element in S′′ is proper if it appears as proper in at least one of S and S′ and
stub otherwise.

As an example, consider the following schemas, each composed of a single
table. S: Project(PCode, Title) and S′: Project(PCode, MgrSSN). Their merge
will be another schema S′′ containing the table Project(PCode, Title, MgrSSN).

2 Technically, both here and in the difference, we should note that schema elements
have their identity. Therefore, in all cases we have new elements in the results; so,
here, we copy in the result schema the elements of the two input schemas, and “mod-
ulo equivalence” means that we collapse the pairs of elements of the two schemas
that are equivalent (only pairs, with one element from each schema, as there are no
equivalent elements within a single schema).

3 Equivalence of elements neglects the difference between stub and proper elements,
as it is not relevant in this context.
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Notice that the table Project and the column PCode appear both in S and in S′

and, since they are recognized as equivalent, there are no duplicates in S′′. The
column Title appears only in S while MgrSSN only in S′; therefore one copy
of each is present in the result schema S′′. We will see a complete example of
merge in Section 5, while discussing the details of our running example.

For this operator, arguments for model independence and model closure can
be made in the same way as we did for diff: specifically, only schema elements
deriving from schemas S and S′ will appear in the result and, consequently, if
they belong to a given model, then S′′ will belong to that model as well.

For the sake of homogeneity in notation, let us define also the operator that
performs translations between models:

Given a schema S of a source model M and a target model M ′, the translation
modelgen(S, M ′) is a schema S′ of M ′ that corresponds to S.

We have discussed at length modelgen elsewhere [3, 5]. Here we just mention
that this notation refers to a generic version of it that works for all source and
target models (the source model is not needed in the notation as it can be
inferred from the source schema), thus avoiding different operators for different
pairs of models. Indeed, our MIDST implementation [4, 5] of modelgen includes
a feature that can select the appropriate translation for any given pair of source
and target models.

4 Model-independent operators in MISM

In this section we show how the definitions of the operators can be made con-
crete, in a model-independent way, in our tool, leveraging on the structure of its
dictionary. The implementation has been carried out in Datalog, and here we
concentrate on its main principles, namely the high-level declarative specifica-
tion, and the possibility of automatic generation of the rules, on the basis of the
metalevel description of models.

The Datalog specification of each operator is composed of two parts:4

1. equivalence test;
2. procedure application.

The first part tests the equivalence to provide the second part with necessary
preliminary information on the elements of the input schemas.

We first illustrate how the equivalence test can be expressed in Datalog, and
then proceed with the discussion for the specific aspects of diff and merge.
At the end of the section, we discuss how all these Datalog programs can be
automatically generated out of the dictionary.

4 For the sake of readability we describe them in a procedural way, even if the speci-
fication is clearly declarative.
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4.1 Equivalence test

The first phase involves the implementation of a test for equivalence of con-
structs, according to the definition we gave in Section 3. Given the definition,
all we need is a rule for each model-generic construct that compares the schema
elements that are instances of such a construct. It refers to two schemas, de-
noted by the “schema variables” SOURCE 1 and SOURCE 2, respectively. It
generates an intensional predicate (a view, in database terms) that indicates the
pairs of OIDs of equivalent constructs. As an example, let us see the Datalog
rule that compares Aggregations.

EQUIV_Aggregation [DEST] (OID1: oid1, OID2: oid2)

<- SM_Aggregation [SOURCE_1] (OID: oid1, Name: name),

SM_Aggregation [SOURCE_2] (OID: oid2, Name: name);

Aggregation has no references (and also no properties) and so the comparison
is based only on name equality (verified with the variable name). If the names
of the two Aggregations are equal, then they are equivalent, and so their OIDs
are included in the view for equivalent Aggregations. In the running example,
tables Project and Manager of the two schemas are detected as equivalent since
they have the same names, respectively.

The situation becomes slightly more complex when constructs involve refer-
ences. This is the case for Lexicals of Aggregation (in the running example, the
various columns of Project and Manager).

EQUIV_Lexical [DEST] (OID1: oid1, OID2: oid2)

<- SM_Lexical [SOURCE_1] (OID: oid1, Name: name, isIdentifier: isId,

isNullable: isNull, type: t, aggregationOID: oid3),

SM_Lexical [SOURCE_2] (OID: oid2, Name: name, isIdentifier: isId,

isNullable: isNull, type: t, aggregationOID: oid4),

EQUIV_Aggregation (OID1: oid3, OID2: oid4);

The first and the second body predicates compare names and homologous
properties of a pair of Lexicals, one belonging to I1 (SOURCE 1) and the other
to I2 (SOURCE 2). Comparisons are made by means of repeated variables (such
as name, isId, isNull, t). Moreover, as Lexicals involve references to Aggregations
(as no column exists without a table, in the example), we need to compare the
elements they refer to. The last predicate in the body performs this task by
verifying that the Aggregations (tables) referred to by the Lexicals (columns) of
I1 and I2 are equivalent (i.e. the corresponding pair of OIDs is in the equivalence
view for Aggregation).

If the constructs under examination belonged to a deeper level, there would
be a predicate to test the equivalence of ancestors for each step of the hierarchical
chain. Each predicate would query the appropriate equivalence view to complete
the test. Termination is guaranteed by the acyclicity of the supermodel.

Let us observe that the Datalog program generated in this way is model-aware
since it takes into account the type of constructs when performing comparisons.
In fact, as it is clear in the examples, Datalog rules are defined with specific



18 Atzeni P., Bellomarini L., Bugiotti F., Gianforme G.

respect to the type of the constructs to be compared: a Lexical is compared only
with another Lexical and so for an Abstract or other constructs.

The program is model generic as well, since the set of rules contains a rule for
each construct in the supermodel. Then a given pair of schemas will really make
use of a subset of the rules, the ones referring to the constructs they actually
involve according to their model.

4.2 The DIFF operator

The diff operator is implemented by a Datalog program with the following
steps:

1. equivalence test (comparison between the input schemas);
2. selective copy.

The first step is the equivalence test we have described in Section 4.1.
As for the second step, there is a Datalog rule for each construct of the

supermodel, hence taking into account each kind of schema element: the rule
verifies whether the OID of an element of the first schema belongs to a tuple
in the equivalence view. If this happens, this means that there is an equivalent
construct in the second schema, implying that the difference must not contain
it, otherwise the copy takes place. For example, the rule for Aggregations results
as follows:

SM_Aggregation [DEST] (OID: #AggregationOID_0(oid), Name: name)

<- SM_Aggregation [SOURCE_1] (OID: oid, Name: name),

!EQUIV_Aggregation (OID1: oid);

In the rule, the # symbol denotes a Skolem functor, which is used to generate
new identifiers (in the same way as we did in MIDST [5]). Indeed, the functor
is interpreted as an injective function, in such a way that the rule produces a
new construct for each different source construct on which it is applicable. The
various functions also have disjoint ranges. The rule copies into the result schema
all the Aggregations of SOURCE 1 that are not equivalent to any Aggregation of
SOURCE 2. The condition of non-equivalence is tested by the negated predicate
(negation is denoted by “!”) over the equivalence view; in fact, if the OID of
an Aggregation of the first source schema is present in the view, then it has
a corresponding Aggregation in the second source schema, and so it must not
belong to the difference.

With reference to the running example, let us compute diff(I1, I2). The rule
above represents the computation of the difference with respect to tables. Since
in Figure 2 both Project and Manager in I1 have an equivalent table in I2, then
the difference does not contain any Aggregation.

Consider now the rule for Lexicals (columns):

SM_Lexical [DEST] (OID: #LexicalOID_0(oid), Name: name,

isIdentifier: isId, isNullable: isNull, type: t,
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aggregationOID: #AggregationOID_0(oid1))

<- SM_Lexical [SOURCE_1] (OID: oid, Name: name,

isIdentifier: isId, isNullable: isNull, type: t,

aggregationOID: oid1),

!EQUIV_Lexical (OID1: oid);

It copies into the result schema all the Lexicals of SOURCE 1 that are not
equivalent to any Lexical of SOURCE 2. In the example of Figure 2, the Lexical
MgrSSN has been removed from Project. Also, SSN of Manager is key in I1 but
not in I2 and the converse for EID. Consequently all of the mentioned Lexicals
will belong to the difference diff (I1, I2).

For the sake of simplicity, we have omitted from the above rules the features
that handle stub elements. However the actual implementation of the difference
requires them in order to address the consistency issues we have discussed in the
previous section. The strategy we adopt is the following: when a non-first level
element (that is, one with references) is copied, the procedure copies its referred
elements too if they are not copied for another reason. Then, unless they are
proper parts of the result, the procedure marks the referred elements as stub.
The following rule exemplifies this with respect to Aggregations.

SM_Aggregation [DEST] (OID: #AggregationOID_0(oid), Name: name,

isStub: true)

<- SM_Aggregation [SOURCE_1] (OID: oid, Name: name),

EQUIV_Aggregation (OID1: oid, isStub: false);

If a Lexical (referring to an Aggregation) belongs to the difference, then
the referred Aggregation must be copied into the difference as stub (if it has
not been copied directly). The rule above copies from the first schema every
Aggregation that would not belong to the difference since it has an equivalent
(non stub) element in the second schema (which is verified by the predicate over
the view, which also contains information on whether the equivalence involves
stub elements) and marks it as stub. As for the input, we must subtract schemas
with stub elements properly. Thus the selective copy in step 2 must be adapted:
it should copy (into the result schema) a non-stub element in the first schema
only if the second schema does not contain a non-stub equivalent element. This
last condition is tested by a predicate over an equivalence view like the one in
the above Datalog rule.

The techniques described refer to the rules for the specification of the differ-
ence of schemas. Indeed, as our dictionary includes also a data level (as illustrated
in a previous paper of ours [2]), which lists all data items that instantiate a given
construct, it is interesting to see how the operator could be specified in such a
way that the result is a schema, as we saw above, together with the associated
data. While working at modelgen, we tackled the same issue, and we devel-
oped a technique that generated data level Datalog programs out of schema level
ones [3]. In such a context, correctness was a delicate issue, as each translation
has its own specific features, and the tool administrator has the responsibility
of verifying the correctness. Here we are interested in a general program, that
implements difference, and therefore we cannot rely upon the approval of a hu-
man. However, things are indeed easier, as the difference needs to include all
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instances of the constructs that appear in the result schema: for example, if the
result of diff includes table Manager, then we need all its instances in the result
database, but this is just a copy, as Manager is a table in the source schema
as well. So, data level rules for diff could be produced as rules that copy all
instances of constructs, with the condition that the construct appears in the
result schema, which is easy to express, as it is indeed the condition in the body
of the schema rule. Therefore, while we omit the details for the sake of space, we
can safely claim that we can generate correct rules that operate on data from
those that operate on schemas.

4.3 The MERGE operator

The approach we follow for merge is based on the same ideas as the one for
diff. We code it in terms of Datalog rules defined over the constructs of MIDST
supermodel. Rules copy elements of one type to elements of the same type and
we guarantee the needed model closure.

The merge operator, as defined in Section 3.2, is represented by a Datalog
program with the following tasks:

1. equivalence test (comparison between the input schemas);
2. selective copy from the first argument;
3. selective copy from the second argument.

The first step involves the computation of an equivalence view containing the
correspondences between the elements of the input schemas.

Assume we are computing S′′ = merge(S, S′). In step 2 the procedure copies
into the destination schema S′′ all the elements in S, except those that are stub
in S and non-stub in S′. In step 3 the procedure copies all the elements of S′

that are not present in S and those that are non-stub in S′ and stub in S.
The combination of these two steps implies that in S′′ there will not be

duplicates of any element. If an element is present both in S and S′, in S as
a stub and in S′ as a non-stub, it will be present in S′′ as a non-stub. A stub
element will appear in the result as stub as well, if an element is present only in
S or S′ as a stub or both in S and S′ as stub.

In such an implementation of the merge, a thorough handling of references is
important and we achieve this by means of Skolem functions, which are injective
as we said in the previous section. In fact, it may happen for an element of
the result schema to have a stub parent in the first source schema and a non-
stub parent coming from the second source schema: let E be an element of S
which is copied into the result schema. E has a stub parent P in S and there
is another element P ′ which is the equivalent non-stub element of P in S′. P
will not be copied from S, but there will be its equivalent P ′ coming from S′.
As a consequence, the reference of E to P must use an OID that is derived from
the OID of P ′ in S′ and not from the OID of P in S. As we have seen for the
difference, this logic can be implemented in Datalog on the basis of a predicate
over the equivalence views.
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By following arguments similar to those for diff, we can claim that, from the
schema level Datalog programs for merge, we can generate programs that im-
plement the operator on data, thus performing the merge of the actual databases
(in the internal representation in our dictionary). The reason is that the operator
is again a sort of selective copy.

4.4 Automatic generation of Datalog programs for the operators

The implementations of both the phases of the operators are based on compar-
isons and copies of schema elements considered in terms of constructs of the
supermodel. We have seen in Section 2 that MIDST handles the descriptions of
these constructs in a dictionary, defining their names, features and references
to one another. An automatic generation of the Datalog programs we have pre-
sented is possible and indeed represents a key point of the approach we propose
here. Concretely, we propose a new module of MISM, OpGen, that automati-
cally generates the rules according to the supermodel constructs. OpGen reads
the information in the dictionary about constructs, their references, and their
properties, and uses it to produce appropriate Datalog rules in the right order,
according to the structure of constructs. As we said in the respective sections,
for each operator we can generate data level rules that perform the selective copy
of the instances of the involved constructs.

Automatically generated operators are not only model-independent but also
supermodel-independent. In fact, in case of extensions to and modifications of
the supermodel, all we need is to use OpGen to generate an updated version of
the operators.

It is worth noting that our model-generic operators are scalable, since their
internal complexity does not depend on the size of the input schemas nor on the
number of modifications. In fact, they are generated by OpGen once and work
for every possible set of input schemas defined in terms of constructs of MIDST
supermodel. Moreover, although more efficient implementations of them could
be designed, their application is entirely devoted to the database system which
addresses, as a consequence, all the optimization issues.

5 A model-independent solution to the round-trip
engineering problem

In the previous sections we described the most common model management
operators. We have shown that since they are defined over the constructs of
MIDST supermodel, they are model-independent; moreover we have shown that
it is possible to exploit their model awareness in order to satisfy the model closure
property. This implies that solutions to model management problems, given in
terms of these operators, are model-independent.

Here we show how our approach can be used to provide a model-independent
solution to the round-trip engineering problem, illustrated in the introduction
as one of the most representative ones in the model management area.
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5.1 The general procedure

Consider Figure 7: S1 is the specification schema and I1 the implementation
schema obtained from S1 with the application of the transformation (a transla-
tion and, possibly, some customizations) map1. Let I2 be a modified version of
I1. The goal is to determine a specification S2 from which I2 could be derived.

Fig. 7. A procedure for the round-trip engineering problem

Operationally, we assume that I1 has been generated from the specification
schema by the modelgen operator, possibly followed by a customization step;
viceversa, we make no specific assumption on how I2 has been obtained: it could
be some transformation (specified by means of a Datalog program or in some
other way), or a manual modification or evolution of I1, or it could even come
from an external input.

Then the procedure is as follows.

1. G′−2 = diff(I1, I2)
Here we use the diff operator to detect which elements of the implementa-
tion schema I1 do not appear in the revised version I2: these are the elements
belonging to I1 but not to I2 (i.e. the removed elements).
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2. G′+2 = diff(I2, I1)
This difference (with parameters swapped with respect to the previous one)
allows to compute which elements have been added in the revision which led
from I1 to I2. In fact, these elements are all the ones present in I2 but not
in I1.

3. S′−3 is obtained by applying to G′−2 the reverse of the mapping map1. The de-
tails then depend on the way map1 is defined. In the common case where it is
an automatic translation from the specification model to the implementation
one (an application of modelgen), possibly followed by a customization, we
have that reverse can be done with modelgen as well, with a translation
from the implementation model to the specification one. This ignores the
possible customizations, under the assumption that changes in I1 (yielding
I2) do not involve customized elements. In fact, if this is the case, G′−2 will
not include the customized elements, since they are removed by the differ-
ence step. It should be noted that in general the existence of the inverse of
a given translation is not guaranteed. We will discuss this issue later in this
section.

4. Similarly for the other difference: S′+3 is obtained by applying to G′+2 the
reverse of the mapping map1.

5. H = merge(S1, S
′+
3 )

H is the union of the original specification S1 with the reversed difference
S′+3 containing the added elements. Therefore, H contains all the original
elements plus the added ones.

6. S2 = diff(H,S′−3 )
The last operation of the procedure subtracts S′−3 from the temporary result
H, because the elements in S′−3 are those that correspond to the elements
removed in the implementation.

It is clear that this procedure does not require information about the models
of the source schemas, since the operators act at MISM metalevel, dealing with
constructs directly, however the model awareness of MISM guarantees the model
closure. In fact, in the same way as we do for translations in our previous tool
MIDST (see Section 2), we apply our operators in the supermodel framework,
and the procedure is preceded and followed by copy steps, the first from the
specific source model to the supermodel and the second from the supermodel to
the specific model, which essentially rename constructs. An example should get
the meaning across: suppose the specification data model is ER, while the im-
plementation belongs to the relational model. Before applying the diff between
I1 and I2, we rename all the elements in terms of constructs of the supermodel.
After this step, there is no need to take into account the model-specific con-
structs anymore and the procedure can continue with respect to model-generic
constructs only. Then, since the operators are defined in such a way that the
difference between two schemas of a model belongs to that model, then we are
guaranteed that the two differences in the procedure belong to the relational
model as well. Finally, we apply merge and diff on ER schemas. These opera-
tors work independently of the model. However, we are sure that the results will
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also belong to the ER model because, as we have illustrated, the operators do
not add any new element.

Moreover, it is important to observe that, if S1, I1 and I2 are proper (and
coherent,5 as we always assume) schemas, then the result S2 of the script is a
proper schema as well. Consider the last two steps of the procedure ((i) H =
merge(S1, S

′+
3 ), (ii) S2 = diff(H, S′−3 )): S1 is assumed to be proper (the script

starts from a specification without stubs). S′+3 contains added elements which
may refer to stub parents. However, as I1 and I2 are coherent, we have that
non-stub equivalents for these stub parents are already present in S1. Therefore
H is proper. S′−3 contains the removed constructs. Then, as I2 is coherent, in S′−3
we cannot come across the removal of parent elements when their descendants
are preserved. Therefore S2 is proper.

In the above procedure, we have referred to applications of modelgen from
the specification model to the implementation one and viceversa, as if they were
one the inverse of the other. This need not be always the case, because mod-
els have different expressive power. However, from the practical point of view,
we have reasonable solutions, as follows. A preliminary observation is that our
translations can be seen as schema mappings where the correspondences are
represented by Skolem functions. In general, schema mappings are not always
invertible according to the strict definition, but in the literature there are pro-
posals for relaxed constraints guaranteeing the existence of a kind of inverse
mapping. According to Fagin et al. [15] a Local As View (LAV) schema mapping,
having a set of Tuple Generating Dependencies (TGDs) where their left-hand
sides are singleton, always admits a quasi-inverse corresponding mapping. Let
us consider a mapping m and a source schema S; applying m to S we obtain
another schema T . A quasi-inverse mapping does not permit to reobtain S (with
its original data) from T , however, it allows to obtain a schema S∗ such that
applying m to it we have T again (with all its data). In our approach the only
translation rules dealing with the actual data are the ones involving Lexicals. All
these rules are LAV TGDs and therefore the whole translation is a LAV schema
mapping and so each translation admits at least a quasi-inverse one that is part
of the MISM repository. In general, a translation can lead to loss of information
(i.e. when we translate a model into a less expressive one); in such cases it is not
possible to define an inverse translation, but only a quasi-inverse one. It is worth
noting that this loss of information has already been accepted by the user of
the system when performing the first translation (from the specification to the
implementation). Moreover, this is the only loss of information of the whole pro-
cess. In fact after the first translation, it is possible to apply the quasi-inverse
translation and the direct one repeatedly always obtaining the same schemas
(with the same data). The inverse (quasi-inverse) translation does not cause loss
of information even if it turns a model into a more expressive one. In fact, the
input schema of the inverse translation has been obtained from a schema of a less

5 As we said in Section 3.2, a schema is coherent if all its constructs have no dangling
references to other constructs.
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expressive model; therefore it contains only structures that can be represented
in such a model.

5.2 Application of the round-trip solving procedure

Now we present the details of the application of the round-trip solving procedure
described in Subsection 5.1 to the case already shown in Figure 2. The specifica-
tion domain is the ER model, while the implementations are relational schemas.
It is a common scenario in which high level specifications are conceptually de-
signed with an ER schema. The implementation, which in this situation belongs
to the relational model, is then derived from the ER through the application of
a translation rule.

The various steps are shown in Figure 8. Schema S1 is composed of two
entities, Project and Manager, and has a relationship R between them. PCode
and Title are Project attributes (PCode is key), while SSN, Name and EID are
Manager attributes (SSN is key).

Map1 is implemented in two parts: a first part of the transformation is rep-
resented by ER-to-relational translation rule. A second part of it consists of the
customization step which splits Name into FName and LName.

The transformation from the old to the new implementation modifies the
table Project by changing the name of its column MgrSSN (to MgrID); it also
modifies the Manager by adding the column Title and changing its key (from
SSN to EID). The foreign key that in I1 connects the column SSN with the
table Manager, does not exist anymore, it is replaced by a new foreign key from
the column MgrID of Project to the table Manager.

The first step of the solving procedure is the double application of the diff
rules to I1 and I2 which yields G′−2 (negative difference) and G′+2 (positive dif-
ference), as we have already seen with examples for the operator in Section 3.2.

Then each semi-difference is reversed with the application of the modelgen
operator, with the ER model as a target. In the case under examination, the
reverse translation is simple, while in general it might be much more complex.
Notice that in the application of the reverse rule, the stubness property of el-
ements is preserved, then for example the entity Project in S′+3 is stub as well
as in G′+2 . Notice that the foreign key of G′−2 is reversed into the relationship
R (that is the same as in S1,6 while the foreign key of G′+2 is reversed into the
relationship R1 (that is different from the one in S1).

Now we have three different versions of the specification: the original one,
S1, together with S′−3 , including all the elements that have to be removed, and
S′+3 , containing all the added elements.

The set-oriented merge of schemas S1 and S′+3 leads to an updated specifi-
cation, H, containing all the initial elements plus the added ones. Then in H

6 We can get back the “original” name because each construct has a name property;
hence also the foreign key has a name property (not shown in figure) in our construct-
based representation; in detail, we instantiated the name of the foreign key during
the translation from S1 to I1 and we did the same during this step.
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Fig. 8. An example of application of the round-trip solving procedure
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we have Project with PCode (coming from S1) and Title (from S1) (the table
Project is not stub anymore since it comes from S1); moreover, there is the
table Manager (non-stub for the same reason as Project) with the attributes
Name (coming from S1), SSN (from S+

3 ), SSN (key) (from S1), EID (from S1),
EID (key) (from S+

3 ) and Title (from S+
3 ). H also contains two relationships, R

(coming from S1) and R1 (from S′+3 ).
Finally, we need to subtract from H all the non-stub elements in S′−3 . There-

fore, SSN (key) and EID are not present in the obtained result S2. The rela-
tionship R of H is also present in S′−3 , so the only relationship between Project
and Manager in S2 will be R1.

6 Related work

This paper illustrates a general approach to model management and relies on our
previous work on model-generic schema and data translation [1, 3–5] describing
our conception and implementation of the modelgen operator. There are many
proposals addressing model management problems which have been put forward
since the original formulation of the problem.

In [7] Bernstein et al. recognize the possibility of a generic metadata approach
to model management: their theoretical formalizations [8] and later studies con-
verged into Rondo, a programming platform for model management [23]. How-
ever their approach is not supported by a description of models and so they pur-
sue model independence without a concrete characterization of models and they
cannot associate schemas with models. Conversely, MIDST (and now MISM)
uses a dictionary of models and schemas to actually represent models and allows
transparent transformations on them.

A parallel but orthogonal approach to model management problems, is that
of Clio [16, 17, 19, 24, 28] whose aim is the development of a user aiding envi-
ronment that allows the specification of a mapping between two instances and,
consequently, generates the rules to implement the high level specified correspon-
dences. Clio mainly offers a solution to data exchange problems by generating
directly executable, though approximate, mappings between schemas. Similarly
to Rondo, it lacks a model-independent representation of schemas and a repre-
sentation of models.

A recent approach to schema evolution is PRISM [14]. Citing the authors,
PRISM provides an intuitive, operational interface, used by the database ad-
ministrator to evaluate the effect of possible evolution steps with respect to
redundancy, information preservation, and impact on queries. In detail, the ad-
ministrator can use a Schema Modification Operators (SMO) [9] language in
order to specify schema changes and check whether such a modification could
cause information loss, introduce redundancy, or grant invertibility. Moreover,
the system allows for an automatic migration of the data, grants compatibility
with old queries (i.e. against an old schema), and maintains the schema history.
We propose something wider in which this approach can fit well: with reference
to our running example, for instance, we could use similar techniques in order to
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constrain the evolutionary step between implementation schemas, thus granting
the aforementioned desirable properties.

Our approach, together with Bernstein’s, is more general and proposes a
global platform for model management where the generation of executable map-
pings, like Clio’s or PRISM’s, is a complementary feature.

7 Conclusions

In this paper, we have discussed a paradigm and a concrete platform allowing
model-independent solutions to a wide range of model management problems.
We have provided effective definitions and implementations of model manage-
ment operators which can be directly executed by the MISM platform. The
operators defined in this way have been used to assemble a solution to major
model management problems.

A major target of the model management research is the development of an
advanced software system managing all the involved problems (model manage-
ment system). Such a system aims at providing applications with an abstraction
layer towards data programmability issues, that is, the whole spectrum of ap-
plication problems concerning data manipulation. The approach presented in
this paper lies in this direction. MIDST represents a framework for model man-
agement problems; MISM is an enhanced version, where operators and solving
procedures are specifically designed to maximize the abstraction level together
with an effective and sound representation of schemas and models. In parallel, we
are working on the development of runtime strategies and algorithms in order to
make our solutions in step with large operational databases as well as compliant
with the most expressive data models.
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