VLDB Journal manuscript No.
(will be inserted by the editor)

Model-Independent Schema Translation

Paolo Atzeni - Paolo Cappellari - Riccardo Torlone
- Philip A. Bernstein - Giorgio Gianforme

Received: date / Accepted: date

Abstract We discuss a proposal for the implementation of
the model management operator ModelGen, which trans-
lates schemas from one model to another, for example from
object-oriented to SQL or from SQL to XML Schema De-
scriptions. The operator can be used to generate database
wrappers (e.g., object-oriented or XML to relational), de-
fault user interfaces (e.g., relational to forms), or default
database schemas from other representations. The approach
translates schemas from a model to another, within a prede-
fined, but large and extensible, set of models: given a source
schema § expressed in a source model, and a target model
TM, it generates a schema S’ expressed in TM that is “equiv-
alent” to S. A wide family of models is handled by using a
metamodel in which models can be succinctly and precisely
described. The approach expresses the translation as Data-
log rules and exposes the source and target of the translation
in a generic relational dictionary. This makes the transla-
tion transparent, easy to customize and model-independent.
The proposal includes automatic generation of translations
as composition of basic steps.

Keywords Schema translation - Data models - Model
management

1 Introduction

To manage heterogeneous data, many applications need to
translate data and their descriptions from one model (i.e.,

The first and third author were partially supported by MIUR, Univer-
sita Roma Tre and an IBM Faculty Award, and the fifth author by a
Microsoft Research Fellowship.

P. Atzeni, P. Cappellari, R. Torlone, G. Gianforme
Universita Roma Tre

P. Bernstein
Microsoft Research

data model) to another. Even small variations of models are
often enough to create difficulties. For example, while most
database systems are now object-relational, the actual fea-
tures offered by different systems rarely coincide, so data
migration requires a conversion. Every new database tech-
nology introduces more heterogeneity and thus more need
for translations. For example, the growth of XML has led
to such issues, including the need to have object-oriented
wrappers for XML data, the translation from nested XML
documents into flat relational databases and vice versa, and
the conversion from one company standard to another, such
as using attributes for simple values and sub-elements for
nesting vs. representing all data in sub-elements. Other pop-
ular models lead to similar issues, such as Web site descrip-
tions, data warehouses, and forms. In all these settings, there
is the need for translations from one model to another. This
problems belongs to the larger context Bernstein [11] termed
model management, an approach to meta data management
that considers schemas as the primary objects of interest and
proposes a set of operators to manipulate them.

According to the model management terminology, this
paper considers the ModelGen operator [11], defined as fol-
lows: given two models M and M, and a schema S of M|,
ModelGen translates S into a schema S, of M, that properly
represents S;. A possible extension of the problem, consid-
ers also the data level: given a database instance /; of Sy, the
extended operator produces an instance I, of S that has the
same information content as /;.

As there are many different models, what we need is an
approach that is generic across models and can handle the
idiosyncrasies of each model. Ideally, one implementation
should work for a wide range of models, rather than imple-
menting a custom solution for each pair of models.

We illustrate the problem with some of its major features
by means of a couple of short examples. Let us consider two
popular data models, Entity-Relationship (ER) and Object-

EN «—] (1LN) (ON) + Code
EMPLOYEE PROJECT
Name o— — Name
Fig. 1 A simple ER schema
EMPLOYEE MEMB. PROJECT
EN Code
Name Name

Fig. 2 The translation of the schema in Figure 1 into a simple object-
oriented model

Oriented (O0O). Indeed, each of them is not “a model,” but
“a family of models,” as there are many different proposals
for each of them: OO with or without keys, binary and n-
ary ER models, OO and ER with or without inheritance, and
so on. Let us assume that our OO model has classes with
simple fields and uses (directed) references as the means of
relating classes to one another. In general, if we have an ER
schema and we want to translate it into an OO schema, we
essentially map entities to classes and replace relationships
with references. Our approach is based on the extension and
generalization of these simple ideas, as follows:

— Entities are mapped to classes (and vice versa in the re-
verse translation) because the two types of constructs
play the same role (or, in other terms, “they have the
same meaning”). Indeed, this situation is common: most
known models have constructs that can be classified ac-
cording to a rather small set of metaconstructs (Atzeni
and Torlone [5]). In fact, the same happens for attributes
of entities and fields of classes. In both cases, this part
of the translation is trivial (in the strict sense: there is no
translation, just renaming of the type of construct, from
“entity” to “class” and from “attribute” to “field”).

— Relationships are replaced by references, and here things
are more complex. As usually relationships are more so-
phisticated (they can be n-ary, many-to-many, or have
attributes), the introduction of new classes (beside those
corresponding to entities) may be needed. So, if for ex-
ample we want to translate the ER schema in Figure 1,
which involves a many-to-many relationship, then we
will have to introduce a new class for such a relation-
ship (see Figure 2).

An interesting issue is that the actual translation can de-
pend on the details of the source and target model. For exam-
ple, if we go from an object model to the relational one, then
we have to implement different translations depending on
whether the source model requires the specification of iden-
tifiers or not. Let us refer to the schema in Figure 3. If the ob-
ject model does not allow (or it allows but does not require)
the specification of identifiers, then, in the translation to the
relational model, we have to add new key attributes in the
tables generated for each class. If instead identifiers are re-

PROF COURSE
PCode TEACHING CNumber
Name N Title
Fig. 3 A simple OO schema
PROF COURSE
ID | PCode | Name ID | CNumber | Title | Teaching

Fig. 4 The relational translation of the OO schema in Figure 3 with
new key attributes

COURSE
CNumber | Title

PROF
PCode

Name Teaching

Fig. 5 The relational translation of the OO schema in Figure 3 without
new key attributes

quired (and, in the example, PCode and CNumber are spec-
ified as identifiers), no new attributes are needed. Figures 4
and 5 show the two possibilities in the translated schema.
In both cases, referential integrity is needed, in the former
case involving the new attributes and in the latter over the
existing identifiers.

The example shows that we need to be able to deal with
the specific aspects of models, and that translations need to
take them into account. We have shown two versions of the
object model, one that has visible keys (besides the system-
managed identifiers) and one that does not. The translation
has to be different as well.

More generally, we are interested in developing a plat-
form that allows the specification of the source and target
models of interest (including OO, OR, ER, UML, XSD, and
so on), with all relevant details, and to generate the transla-
tion of their schemas from one model to another.

This paper describes the schema-related component of
MIDST (Model Independent Data and Schema Translation),
a framework for the development of an effective implemen-
tation of a generic (i.e., model independent) platform for
schema and data translation. The development of data trans-
lation has been sketched in a preliminary report (Atzeni et
al. [1]), but it is beyond the scope of this paper.

In the next section we give an overview of our approach,
with a summary of the contributions and a description of the
organization of the subsequent sections.

2 Overview

2.1 Constructs and models: a metamodel approach

Our approach is based on the idea of a metamodel, defined
as a set of constructs that can be used to define models,

which are instances of the metamodel. This is based on Hull
and King’s observation [26] that the constructs used in most

known models can be expressed by a limited set of generic
(i.e., model-independent) metaconstructs: lexical, abstract,
aggregation, generalization, function. In fact, we define a
metamodel by means of a set of generic metaconstructs.
Each model is defined by its constructs and the metacon-
structs they refer to. Simple versions of the models in the
examples in Section 1 could be defined as follows:

— an ER model involves (i) abstracts (the entities), (ii) ag-
gregations of abstracts (relationships), (iii) lexicals (at-
tributes of entities and, in most versions of the model, of
relationships);

— an OO model has (i) abstracts (classes), (ii) reference
attributes for abstracts, which are essentially functions
from abstracts to abstracts, (iii) lexicals (fields or prop-
erties of classes);

— the relational model involves (i) aggregations of lexi-
cals (tables), (ii)) components of aggregations (columns),
which can participate in keys, (iii) foreign keys defined
over aggregations and lexicals.

The various constructs are related to one another by means
of references (for example, each attribute of an abstract has
a reference to the abstract it belongs to) and have proper-
ties that specify details of interest (for example, for each at-
tribute we specify whether it is part of the identifier and for
each aggregation of abstracts we specify its cardinalities).
We will see these aspects in detail in the following sections.

All the information about models and schemas is main-
tained in a dictionary. We will discuss the dictionary in some
detail later in the paper; here we just mention that it has a
relational implementation, which is exploited by the specifi-
cation of translations, written in Datalog.

2.2 The supermodel and translations

A major concept in our approach is the supermodel, a model
that has constructs corresponding to all the metaconstructs
known to the system. Thus, each model is a specialization of
the supermodel and a schema in any model is also a schema
in the supermodel, apart from the specific names used for
constructs.

It is worth mentioning that while we say that we follow a
“metamodel” approach, what we actually implement in our
dictionary is the supermodel, as we will see in Section 3.

The supermodel gives us two interesting benefits. First,
it acts as a “pivot” model, so that it is sufficient to have
translations from each model to and from the supermodel,
rather than translations for every pair of models. Thus, a lin-
ear and not a quadratic number of translations is needed.
Indeed, since every schema in any model is also a schema
of the supermodel (modulo construct renaming), the only
needed translations are those within the supermodel with
the target model in mind: a translation is composed of (a)

a “copy” (with construct renaming) from the source model
into the supermodel; (b) an actual transformation within the
supermodel, whose output includes only constructs allowed
in the target model; (c) another copy (again with renaming
into the target model). The second advantage is related to
the fact that the supermodel emphasizes the common fea-
tures of models. So, if two source models share a construct,
then their translations towards similar target models could
share a portion of the translation as well. In our approach,
we follow this observation by defining elementary (or basic)
translations that refer to single constructs (or even specific
variants thereof). Then, actual translations are specified as
compositions of basic ones, with significant reuse of them.

For example, assume we have as the source an ER model
with binary relationships (with attributes) and no general-
izations and as the target a simple OO model. To perform
the task, we would first translate the source schema by re-
naming constructs into their corresponding homologous el-
ements (abstracts, binary aggregations, lexicals, generaliza-
tions) in the supermodel and then apply the following steps
(sketched in Figure 6):

(1) eliminate attributes of aggregations, by introducing new
abstracts and one-to-many aggregations

(2) eliminate many-to-many aggregations, by introducing
new abstracts and one-to-many aggregations

(3) replace one-to-many aggregations with references be-
tween abstracts

If instead we have a source ER model with generalizations
but no attributes on relationships (still binary), then, after
the copy in the supermodel, we can apply steps (2) and (3)
above, followed by another step that takes care of general-
izations:

(4) eliminate generalizations (replacing them with refer-
ences)

It is important to note that the basic steps are highly
reusable. Let us comment on this issue with the help of Fig-
ure 7. The figure shows several models that can be obtained
by combining the constructs seen in the previous examples.
Indeed, this is just a subset of the models our tool handles
(we will come back to this issue at the end of the next sec-
tion), but it is sufficient to make the point. In the figure, we
have also omitted various translations, including the identity
one, which would be useful to go from a model to a more
complex version of it, for example from ER2 or ER3 t0 ERI.

The diagram in Figure 7 shows the translations we have
just commented on (with the two source models marked
with ER2 and ER3, respectively, and the target model with
002). Reuse arises in various ways. First, entire translations
can be used in various contexts: the translation composed
of steps (1), (2) and (3), which we have mentioned for the
translation from ER2 to 002, can be used also to go from the

@)

Fig. 6 A translation composed of three steps

most complex ER model in the picture (the top one, indi-
cated with Er1) to the OO model with generalizations (o0o1)
in the picture. Second, individual steps can be composed in
different ways: for example, if we want to go from Er1 to the
relational model (in the bottom left corner), then we could
use basic translation (5) to eliminate generalizations, then
(1) and (2) to reach a simple ER model (Er7), and finally (7)
to get to the relational one.

2.3 Building complex translations

With many possible models and many basic translations,
it becomes important to understand how to find a suitable
translation given a source and a target model. Intuitively, we
could think of using a graph such as that in Figure 7, with
models as nodes and basic translations as edges. Here there
are two difficulties. The first one is how to verify what tar-
get model is generated by applying a basic step to a source
model (for example to verify that transformation (1) indeed
generates schemas of model Er3 from schemas of Er1 and
that it generates schemas of Er5 from schemas of Er2). The
second problem is related to the size of the graph: due to
the number of constructs and properties, we have too many
models (a combinatorial explosion of them, if the variants
of constructs grow) and it would be inefficient to find all
associations between basic translations and pairs of models.

We propose a complete solution to the first issue, as fol-
lows. We associate a concise description with each model,
by indicating the constructs it involves with the associated
properties (described in terms of propositional formulas),
and a signature with each basic translation. Then, a notion of
application of a signature to a model description allows us
to obtain the description of the target model. With our basic
translations written in a Datalog dialect with OID-invention,

Y

Y

]
]

[L]

as we will see shortly, it turns out that signatures can be au-
tomatically generated and the application of signature gives
an exact description of the target model.

With respect to the second issue, the complexity of the
problem cannot be completely circumvented, but we have
devised algorithms that, under reasonable hypotheses, ef-
ficiently find a complex translation given a pair of models
(source and target). So, for example, given ER2 and 002, our
algorithm properly finds the translation composed of steps
(1), (2) and (3), out of a library of many basic translations.

2.4 Specification of basic translations

In the current implementation of our tool, translations are
implemented as programs in a Datalog variant with OID-
invention, where the latter feature is obtained by means of
the use of Skolem functors. Each translation is usually con-
cerned with a very specific task, such as eliminating a cer-
tain variant of a construct (possibly introducing another con-
struct), with most of the constructs left unchanged. There-
fore, in our programs only a few of the rules concern real
translations, whereas most of them just copy constructs from
the source schema to the target one. For example, the trans-
lation that performs step (3) in Figures 6 and 7 (the trans-
lation from an ER model to an object-oriented one) would
involve the rules for the following tasks:

(3-1) copy abstracts

(3-ii) copy lexical attributes of abstracts

(3-iii) replace relationships (only one-to-many and one-to-
one) with reference attributes

(3-iv) copy generalizations

In Figure 8 we show two of the rules: (3-i), as an ex-
ample of a copy rule; and (3-iii), the really significant one,

Abbreviations
GEN with generalizations
NO-GEN | without generalizations
AR with attributes on relationships
NO-AR without attributes on relationships
M:N with many-to-many relationships
NO-M:N | without many-to-many relationships

GEN/AR/M N }

(5

@

ER2
NO- GEN/AR/M N J EN/NO AR/M N j GEN/AR/NO M:N J

1 (6))

Sy

NO- GEN/NO AR/M:N ’ GEN/NO- AR/NO M:N]

o e\

NO- GEN/NO AR/NO M:N

S

/

-
REL 8) 002
RELATIONAL

Basic translations

(1) eliminate attributes from aggregations of abstracts

(2) eliminate many-to-many aggregations of abstracts

(3) replace aggregations of abstracts with references

(4) eliminate generalizations (introducing new references)

(5) eliminate generalizations (introducing new aggregations of abstracts)
(6) replace aggregations of abstracts with references

(7) replace abstracts and their aggregations with aggregations of lexicals
(8) replace abstracts and references with aggregations of lexicals

Fig. 7 Some models and translations between them

which replaces binary one-to-many (or one-to-one) relation-
ships with reference attributes. We will discuss rules in de-
tail in Section 4. Here we just make some high-level com-
ments. Rules refer directly to our dictionary, and this is fa-
cilitated by the relational implementation: the predicates in
the rule correspond to the tables in the dictionary. The body
of each rule includes conditions for its applicability. Rule
3-i has no condition, and so it copies all abstracts. Instead,
Rule 3-iii, because of the condition in line 13, is applied only
to aggregations that have IsFunctionallL=TRUE, that is, as
we will clarify later, one-to-many and one-to-one relation-
ships. Row 2 of each rule “generates” a new construct in-
stance in the dictionary with a new identifier generated by a

Skolem function;1 Rule 3-i generates a new ABSTRACT for
each ABSTRACT in the source schema (and it is a copy, ex-
cept for the internal identifier) whereas Rule 3-iii generates
anew ABSTRACTATTRIBUTE for each BINARYAGGREGA-
TIONOFABSTRACTS, with suitable features.

It is worth noting that the specification of rules in Dat-
alog allows for another way of reuse. In fact, a basic trans-
lation is a program made of several Datalog rules, and it is
often the case that a rule is used in various programs. This
happens for all “copy” rules, such as 3-i above, but also for
many other rules; for example, the two programs that imple-
ment steps (7) and (8) in Figure 7 (which translate into the

! We will comment on Skolem functors, which may appear both in
heads and in bodies of rules, in Section 4.

Rule 3-i
. ABSTRACT(
OID: #abstract_0(absOid),
Abs-Name: name,
Schema: tgt)
«— ABSTRACT(
OID: absOid,
Abs-Name: name,
Schema: src)

1.
2
3
4.
5.
6
7
8

9

10.
11.
12.
13.
14.
15.

. < BINARYAGGREGATIONOFABSTRACTS(

Rule 3-iii
ABSTRACTATTRIBUTE(

OID: #abstractAttribute_1(aggrOid),
Abstract: #abstract_0(absOid1l),
Att-Name: aggName,
AbstractTo: #abstract_0(absOid2),
IsOptional: isOpt1,
Schema: tgt)

OID: aggrOid,
Agg-Name: aggName,
Abstractl: absOidl,
IsOptionall: isOptl,
IsFunctionall: “TRUE”,
Abstract2: absOid2,
Schema: src)

Fig. 8 Two Datalog rules

relational model from a simple ER and a simple OO, respec-
tively) would definitely share a rule that transforms abstracts
into aggregations of lexicals (entities or classes into tables)
and a rule that transforms attributes of abstracts into lexical
components of aggregations (attributes into columns).

2.5 Organization of the paper

The rest of the paper is organized as follows. In Section 3
we present the metamodel approach and the dictionary that
handles models and schemas. Then, in Section 4 we discuss
basic translations and their specification in Datalog. In Sec-
tion 5 we discuss how complex translations are generated
out of a library of basic translations. Then, in Section 6 we
briefly describe the features of the tool we have implemented
to validate the approach and show its application to a num-
ber of examples. In Section 7 we discuss related work. Sec-
tion 8 is the conclusion.

3 Models, schemas and the dictionary
3.1 Description of models

As we observed in the previous section, the starting point of
our approach is the idea that a metamodel is a set of con-
structs (called metaconstructs) that can be used to define
models, which are instances of the metamodel. Therefore,
we actually define a model as a set of constructs, each of
which corresponds to a metaconstruct. An even more im-
portant notion, also mentioned in the previous section, is
the supermodel: it is a model that has a construct for each
metaconstruct, in the most general version. Therefore, each
model can be seen as a specialization of the supermodel, ex-
cept for renaming of constructs.

A conceptual view of the essentials of this idea is shown
in Figure 9: the supermodel portion is predefined, but can

be extended, whereas models are defined by specifying their
respective constructs, each of which refers to a construct of
the supermodel (SM-construct) and so to a metaconstruct.
It is important to observe that our approach is independent
of the specific supermodel that is adopted, as new metacon-
structs and so SM-constructs can be added. This allows us to
show simplified examples for the set of constructs, without
losing the generality of the approach.

In order to make things concrete and to comment on
some details, we show in Figure 10 the relational imple-
mentation of a portion of the dictionary, as we defined it
in our tool. The actual implementation has more tables and
more columns for each of them. We concentrate on the prin-
ciples and omit marginal details. The SM-CONSTRUCT ta-
ble shows (a subset of) the generic constructs (which corre-
spond to the metaconstructs) we have: “Abstract,” “Attribu-
teOfAbstract,” “BinaryAggregationOf Abstracts,” and so on;
these are the categories according to which the constructs of
interest can be classified. Then, each construct in the CON-
STRUCT table refers to an SM-construct (by means of the sm-
Constr column whose values contain foreign keys of SM-
CONSTRUCT) and to a model (by means of Model). For ex-
ample, the first row in CONSTRUCT has value “mc1” for
sm-Constr in order to specify that “Entity” is a construct (of
the “ER” model, as indicated by “m1” in the Model column)
that refers to the “Abstract” SM-construct. It is worth noting
(fourth row of the same table) that “Class” is a construct
belonging to another model (“OODB”) but referring to the
same SM-construct.

Tables SM-PROPERTY and SM-REFERENCE describe, at
the supermodel level, the main features of constructs, prop-
erties and relationships among them. We discuss each of
them in turn. Each SM-construct has some associated prop-
erties, described by SM-PROPERTY, which will then require
values for each instance of each construct corresponding
to it. For example, the first row of SM-PROPERTY tells us
that each “Abstract” (mc1) has an “Abs-Name,” whereas the

MODELS : SUPERMODEL
|
(0.N) (1,1) (1,1) (0,N) SM-
MODEL CONSTRUCT
CONSTRUCT
|
[
|
Fig. 9 A simplified conceptual view of models and constructs
SM-CONSTRUCT
OID sm-C-Name IsLex
mcl Abstract false
mc2 AttributeOf Abstract true
mc3 | BinaryAggregationOfAbstracts | false
mc4 AbstractAttribute false
SM-PROPERTY
OID | sm-P-Name | sm-Constr | Type SM-REFERENCE
mpl Abs-Name mcl string OID | sm-R-Name | sm-Constr | sm-ConstrTo
mp2 Att-Name mc2 string mrl Abstract mc2 mcl
mp3 Isld mc2 bool mr2 Abstract] mc3 mcl
mp4 | IsFunctionall mc3 bool mr3 Abstract2 mc3 mcl
mp5 | IsFunctional2 mc3 bool
SUPERMODEL
MODELS
MODEL CONSTRUCT
OID | M-Name OID C-Name Model | sm-Constr
ml ER col Entity ml mcl
m2 OODB co2 AttributeOfEntity ml mc2
co3 | BinaryRelationship ml mc3
co4 Class m2 mcl
PROPERTY co5 Field m2 mc2
OID P-Name Constr Type sm-Prop co6 ReferenceField m2 mc4
prl Ent-Name col string mpl
pr2 Att-Name co2 string mp2
pr3 IsKey co2 bool mp3 REFERENCE
pr4 IsFunctional 1 co3 bool mp4 OID | R-Name | Constr | ConstrTo | sm-Ref
pr5 | IsFunctional2 co3 bool mp5 refl Entity co2 col mrl
ref2 | Entityl co3 col mr2
pr7 Cl-Name co4 string mpl ref3 | Entity2 co3 col mr3
pr8 Fi-Name co5 string mp2
pr9 Isld coS bool mp3 ref6 Class co5 co4 mrl

Fig. 10 The relational implementation of a portion of the dictionary

third says that for each “AttributeOfAbstract” (mc2) we can
specify whether it is part of the identifier of the “Abstract” or
not (property “Isld”). Correspondingly, at the model level,
we have that each “Entity” has a name (first row in table
PROPERTY) and that for each “AttributeOfEntity” we can
tell whether it is part of the key (third row in PROPERTY).
In the latter case the property has a different name (“IsKey”
rather than “IsId”). It is worth observing that “Class” and
“Field” have the same features as “Entity” and “Attribute-
OfEntity,” respectively, because they correspond to the same
pair of SM-constructs, namely “Abstract” and “AttributeO-

fAbstract.” Other interesting properties are specified in the
fourth and fifth rows of SM-PROPERTY. They allow for the
specification of cardinalities of binary aggregations by say-
ing whether the participation of an abstract is “functional”
or not: a many-to-many relationship will have two false val-
ues, a one-to-one two frue ones, and a one-to-many a frue
and a false.

Table SM-REFERENCE describes how SM-constructs are
related to one another by specifying the references between
them. For example, the first row of SM-REFERENCE says
that each “AttributeOfAbstract” (construct mc2) refers to

an “Abstract” (mcl); this reference is named “Abstract” be-
cause its value for each attribute will be the abstract it be-
longs to. Again, we have the issue repeated at the model
level as well: the first row in table REFERENCE specifies
that “AttributeOfEntity” (construct “co2,” corresponding to
the “AttributeOfAbstract” SM-construct) has a reference to
“col” (“Entity”). The same holds for “Class” and “Field,”
again, as they have the same respective SM-constructs. The
second and third rows of SM-REFERENCE describe the fact
that each binary aggregation of abstracts involves two ab-
stracts and the homologous happens for binary relationships
in the second and third rows of REFERENCE.

The close correspondence between the two parts of our
dictionary is a consequence of the way it is managed. The
supermodel part (top of Figure 10) is its core; it is predefined
(but can be extended) and used as the basis for the defini-
tion of specific models. Essentially, the dictionary is initial-
ized with the available SM-constructs, with their properties
and references. Initially, the model-specific part of the dic-
tionary is empty and then individual models can be defined
by specifying the constructs they include by referring to the
SM-constructs they refer to. In this way, the model part (bot-
tom of Figure 10) is populated with rows that correspond to
those in the supermodel part, except for the specific names,
such as “Entity” or “AttributeOfEntity,” which are model
specific names for the SM-constructs “Abstract” and “At-
tributeOf Abstract,” respectively. This structure causes some
redundancy between the two portions of the dictionary, but
this is not a great problem, as the model part is generated
automatically: the definition of a model can be seen as a list
of supermodel constructs, each with a specific name.

An additional feature we have is the possibility of speci-
fying conditions on the properties for a construct, in order to
put restrictions on a model. For example, to define an object
model that does not allow the specification of identifying
fields, we could add a condition that says that the property
“IsId” associated with “Field” is identically “false.” These
restrictions can be expressed as propositional formulas over
the properties of constructs. We will make this observation
more precise in Section 5.2.

3.2 Description of schemas

The model portion of our dictionary is a metadictionary in
the sense that it can be the basis for the description of model-
specific dictionaries, with one table for each construct, with
their respective properties and references. For example, the
schema of a dictionary for the binary ER model mentioned
above includes tables ENTITY, ATTRIBUTEOFENTITY, and
BINARYRELATIONSHIP, as shown in Figure 11. The con-
tent of the dictionary describes two schemas, shown in Fig-
ure 12. The dictionary for a model has a structure that can
be automatically generated when the model is defined. At

the initialization of the tool, this portion of the dictionary is
empty, and the tables for each are created when the model is
defined.

Figure 13 shows a similar dictionary, for an object data
model, with very simple constructs, namely class, field (as
discussed above), and reference field.

In the same way as the supermodel gives a unified view
of all the constructs of interest, it is useful to have an in-
tegrated view of schemas in the various models, describing
them in terms of their SM-constructs rather than constructs
as we have done so far. As we anticipated in Section 2, this
gives great benefits to the translation process. The dictionary
for the supermodel has tables whose names are those of the
SM-constructs and whose columns correspond to their prop-
erties and references. We show an excerpt of the dictionary
in Figure 15. Its content is obtained by putting together the
information in the model-specific dictionaries. For example,
Figure 15 shows the portion of the supermodel that suffices
for the descriptions of the schemas in the versions of the ER
and OO model shown in Figures 11 and 13. In particular, the
table ABSTRACT is the union (modulo suitable renaming)
of tables ENTITY and CLASS in Figures 11 and 13, respec-
tively.? Similarly, ATTRIBUTEOFABSTRACT is the union of
ATTRIBUTEOFENTITY and FIELD.

We summarize our approach to the description of sche-
mas and models by means of Figure 16. We have a dictio-
nary composed of four parts, with two coordinates: sche-
mas (lower portion) vs. models (upper portion) and model-
specific (left portion) vs. supermodel (right portion).

3.3 Generality of the approach

The above discussion confirms that it is indeed possible to
describe many models and variations thereof by means of
just a few more constructs. In the current version of our
tool we have nine constructs, the four shown in Figure 15
(with ATTRIBUTEOFABSTRACT replaced by the more gen-
eral LEXICAL, used for all value-based simple constructs)
plus additional ones for representing n-ary aggregations of
abstracts, generalizations, aggregations of lexicals, foreign
keys, and structured (and possibly nested and/or multival-
ued) attributes. The relational implementation has a few ad-
ditional tables, as some constructs require two tables, be-
cause of normalization. For example, n-ary aggregations re-
quire two tables, one for the aggregations and one for the
components of each of them. We summarize constructs and

2 In the figures, for the sake of understandability, we have used, for
each construct and schema, the same identifier in the supermodel dic-
tionary and in the model specific one. So, for example “s1” is used
both for a schema in the ER model and for the corresponding one in
the supermodel.

Fig. 14 The OO schema described in the dictionary in Figure 13

SCHEMA
ATTRIBUTEOFENTITY
QD | S-Name OID | Entity | AttN T isKey | Sch
] SchemaER1 ntity tt-Name .ype ISKey chema
2 SchemaER?2 al el Code int true sl
a2 el SName string | false sl
a3 el City string | false sl
ENTITY .
a4 e2 SSN int true sl
OID | Ent-Name | Schema .
ad e2 Name string | false sl
el School sl .
a6 e3 CN int true sl
e2 Professor sl . .
a7 e3 Title string | false sl
e3 Course sl .
a8 e4 EN int true s2
e4 Employee s2
e5 Project s2
BINARYRELATIONSHIP
OoID Rel-Name Entityl | IsOptl | IsFunctionall | Entity2 Schema
bl Membership e2 false true el sl
b2 Teaching e3 true true e2 sl
b3 Participation ed false false e5 s2
Fig. 11 The dictionary for a simple ER model
SSN Name
Code o— (O.N) (L1 (ON) o.1) —e CN
SName o— SCHOOL PROFESSOR COURSE
City o—| —o Title
EN o—| (1N ON) —e Code
EMPLOYEE PROJECT
Name o— —o Name
Fig. 12 The ER schemas described in the dictionary in Figure 11
FIELD
SCHEMA OID | Class | Fi-Name Type isld | Schema
f1 cl Code int true s3
OID S-Name .
3 SchemaOO1 f2 cl SName string | false s3
- 3 cl City string | false s3
f4 c2 SSN int true s3
CLASS
OID | Cl-Name | Schema
C; PSC?OOI Sg REFERENCEFIELD
C3 rCo essor 53 OID | Class | Ref-Name | ClassTo | isOpt | Schema
¢ ourse s rl c2 Memb. cl false s3
2 c3 Teach. c2 true s3
Fig. 13 The dictionary for a simple OO model
ScHOOL PROFESSOR COURSE
Code MEMB. SSN TEACH. CN
SName < N Titl
City ame OPT itle

ATTRIBUTEOFABSTRACT
SCHEMA OID | Abstract | Att-Name | Type isld Schema
OID | SchemaName | Model al el Code int true sl
sl SchemaER]1 ml a2 el SName string | false sl
s2 SchemaER2 ml a3 el City string | false sl
s3 SchemaOO1 m2 a4 e2 SSN int true sl
ad e2 Name string | false sl
ABSTRACT
m Abs-Name Schema a8 ed EN int true s2
el School sl
e2 Professor sl f1 cl Code int true s3
e3 Course sl
e4 Employee s2
e5 Project s2 ABSTRACTATTRIBUTE
cl School s3 OID | Abstract | Att-Name | AbstractTo | isOpt | Schema
rl c2 Memb. cl false s3
2 c3 Teach. c2 true s3
BINARYAGGREGATIONOFABSTRACTS
OID Agg-Name Abstractl | IsOptionall | IsFunctionall | Abstract2 | ... | Schema
bl Membership e2 false true el sl
b2 Teaching e3 true true e2 sl
b3 Participation ed false false eS s2
Fig. 15 A model-generic dictionary, based on the supermodel
model descriptions models supermodel
(the “metalevel”) (Figure 10, bottom) (Figure 10, top)

model-specific schemas

schema descriptions (Figures 11 and 13)

supermodel schemas
(Figure 15)

model specific
Fig. 16 The four parts of the dictionary

(families3 of) models in Figure 17, where we show a matrix,
whose rows correspond to the constructs and columns to the
families we have experimented with. In the cells, we use
the specific name used for the construct in the family (for ex-
ample, Abstract is called Entity in the ER model). The vari-
ous models within a family differ from one another (i) on the
basis of the presence or absence of specific constructs and
(ii) on the basis of details of (constraints on) them. To give
an example for (i) let us recall that versions of the ER model
could have generalizations, or not have them, and the OR
model could have structured columns or just simple ones.
For (ii) we can just mention again the various restrictions
on relationships in the binary ER model (general vs. one-to-
many), which can be specified by means of constraints on
the properties. It is also worth mentioning that a given con-
struct can be used in different ways (again, on the basis of
conditions on the properties) in different families: for exam-
ple, we have used a multivalued structured attribute in the
XSD family and a monovalued one in the OR family (we
have a property isSet which is constrained to false).

3 The notion of family of models is intuitive now and will be made
more precise in Section 5.

model generic

An interesting issue to consider here is “How universal is
this approach?” or, in other words, “How can we guarantee
that we can deal with every possible model?”” A major point
is that the metamodel is extensible, which is both a weak-
ness and a strength. It is a weakness because it confirms that
it is impossible to say you have a complete one. However, it
is a strength because it allows the addition of features when
needed. This applies both to the details of the models of in-
terest and to the families of models. With respect to the first
issue, let us give an example: if one wants to handle XSD in
full detail, then the metamodel and the supermodel need to
be complex at least as XSD is. In fact, the level of detail can
vary greatly and it can be chosen on the basis of the context
of interest.

With respect to the second issue it is worth mention-
ing that the approach can be used to handle metamodels in
other contexts, with the same techniques. Indeed, we have
had preliminary experiences with semantic Web models [3],
with the management of annotations [32], and with adaptive
systems [21]: for each of them, we defined a new set of con-
structs (and so a different metamodel and supermodel) and
new basic translations, but we used the same framework and
the same engine.

eqity- ‘ Binar)./ Enti.ty— Object .(UML Objf:ct— Relational XSD
Relationship Relationship Class Diagram) Relational
Abstract Entity Entity Class TypedTable Root-
Element
Lexical Attribute Attribute Field Column Column Simple-
Element
BinaryAggregation- Binary-
OfAbstracts Relationship
AbstractAttribute ReferenceField Reference
Aggregation— Relationship
OfAbstracts
Generalization Generalization Generalization Generalization Generalization
Aggregation Table Table
ForeignKey ForeignKey ForeignKey ForeignKey
Structure- Structured- Structured- Complex-
OfAttributes Field Column Element

Fig. 17 Constructs and models

In summary, the point is that the approach is independent
of the specific supermodel. The supermodel we have mainly
experimented with so far is a supermodel for database mod-
els and covers a reasonable family of them. If models were
more detailed (as is the case for a fully-fledged XSD model)
then the supermodel would be more complex. Also, other
supermodels can be used in other contexts.

4 Basic translations

Section 2 gave a general idea of the specification of transla-
tions in our proposal as a composition of basic steps. In this
section we give some more details of basic translations and
their implementation in Datalog. In the next section we will
discuss how to obtain an automatic generation of complex
translations out of a library of basic steps.

We have already shown a couple of Datalog rules in Sec-
tion 2, and commented on some aspects. Let us now go into
more detail, again referring to the rules in Figure 8.

We first comment on our syntax. We use a non-positional
notation for rules, so we indicate the names of the fields and
omit those that are not needed (rather than using anonymous
variables). Our rules generate constructs for a target schema
(tgt) from those in a source schema (src). We may assume
that variables tgt and src are bound to constants when the
rule is executed. Each predicate has an OID argument, as
we saw in Figure 8. For each schema we have a different
set of identifiers for the constructs. So, when a construct is
produced by a rule, it has to have a “new” identifier. It is
generated by means of a Skolem functor, denoted by the #
sign in the rules.

We have the following restrictions on our rules. First,
we have the standard “safety” requirements [38]: the literal
in the head must have all fields, and each of them with a
constant or a variable that appears in the body (in a posi-
tive literal) or a Skolem term. Similarly, all Skolem terms in
the head or in the body have arguments that are constants
or variables that appear in the body. Moreover, our Datalog
programs are assumed to be coherent with respect to ref-
erential constraints: if there is a rule that produces a con-
struct C that refers to a construct C’, then there is another
rule that generates a suitable C’ that guarantees the satisfac-
tion of the constraint. In the example in Figure 8, rule (3-iii)
is acceptable because there is rule (3-i) that copies abstracts
and guarantees that references to abstracts by (3-iii) are not
dangling.

The body of rule (3-iii) unifies only with binary aggre-
gations that have TRUE as a value for IsFunctionall: this is
the condition that holds for all one-to-one and one-to-many
relationships.* For each of them it generates a reference at-
tribute from the abstract that participates with cardinality
one (IsFunctionall=TRUE) to the other abstract.’> This basic
translation is designed for models that do not have many-
to-many relationships. If we apply this rule to a model with
many-to-many relationships, without applying a step that re-

4 As we saw in Section 3, binary aggregations have properties Is-
Functionall and IsFunctional2 for specifying cardinalities. We as-
sume that it cannot be the case that IsFunctional2=TRUE and IsFunc-
tional1=FALSE; therefore if IsFunctionall is FALSE then the relation-
ship is many-to-many and if it is TRUE it is not many-to-many.

5 For one-to-one relationships, both abstracts participate with cardi-
nality one. We choose one of them, the first one, even if the converse
would be appropriate as well.

12

moves them before (step (2) in the examples above and in
Figure 7), then we would lose the information carried by
those relationships. We will formalize this point later in Sec-
tion 5 in such a way that we could say that step (3) ignores
many-to-many relationships.

Let us comment more on the two rules in Figure 8. Rule
(3-1) generates a new abstract (belonging to the target sche-
ma) for each abstract in the source schema. The Skolem
functor #abstract_0 is responsible for the generation of a
new identifier. Skolem functors produce injective functions,
with the additional constraint that different functions have
disjoint ranges, so that a value is generated only by the same
function with the same argument values. For the sake of
readability (and also for some implementation issues omit-
ted here), we include the name of the target construct (ab-
stract in this case) in the name of the functor, and use a
suffix to distinguish the various functors associated with a
construct. The _0 suffix always denotes the “copy” functor.

Rule (3-iii) replaces each binary non-many-to-many re-
lationship (BINARYAGGREGATIONOFABSTRACTS, in su-
permodel terminology) with a reference (ABSTRACTATTR-
IBUTE). The rule has a variety of Skolem functors. The head
has three Skolem terms, which make use of two functors:
#referenceAttribute_1, for the OID field, and #abstract_0
twice, for Abstract and AbstractTo respectively. The two
play different roles. The first Skolem term generates a new
value, as we saw for the previous rule. Indeed, this is the case
for all functors appearing in the OID field of the head of a
rule. The other two terms correlate the element being created
with elements created by rule (3-i), namely new abstracts
generated in the target schema as copies of abstracts in the
source one. The new ABSTRACTATTRIBUTE being gener-
ated belongs to the ABSTRACT in the target schema gener-
ated for the ABSTRACT denoted by variable absOid! in the
source schema and refers to the target ABSTRACT generated
for the source ABSTRACT denoted by absOid2.

Our approach to rules allows for a lot of reusability, at
various levels. First of all, we have already seen that indi-
vidual basic translations can be used in different contexts;
in the space of models in Figure 7, each translation can be
used in many simple steps. For example, translation (3) can
be used to transform relationships into references, for going
from different variants of the ER model to homologous vari-
ants of the OO one. In the figure, it can be used to go from
ER6 to 001 or from ER7 to 002.

Second, as each translation step is composed of a num-
ber of Datalog rules, some of which are just “copy” rules,
they can be used in many basic translations. This is easily the
case for plain copy rules, but can be applied also to “condi-
tional” ones, that is, copy rules that are applied only to a sub-
set of the constructs. For example, the rule that eliminates
many-to-many relationships copies all the relationships that

are not many-to-many; this can be done with a copy rule
extended with an additional condition in the body.

In some cases, basic translations can be written with re-
spect to a “core” set of Datalog rules, with copy rules added
automatically, given the set of constructs in the supermodel.
In this way, the approach would become partially indepen-
dent of the current supermodel, especially with respect to its
extensions. For example, in our case, assume that initially
the supermodel does not include generalizations; our basic
translation (3), which replaces binary aggregations with ref-
erences, could be defined by means of the specification of
rule (3-iii), with rule (3-i), which copies abstracts, added
automatically because of referential integrity in the super-
model, and rule (3-ii), which copies attributes of abstracts,
added because attributes of abstract are “compatible” with
abstracts. Then, if the supermodel were extended with gen-
eralizations, the basic translation would be extended with
rule (3-iv), which copies generalizations.

Most of our rules, such as the two we saw, are recursive
according to the standard definition. However, recursion is
only “apparent.” A literal occurs in both the head and the
body, but the construct generated by an application of the
rule belongs to the target schema, so the rule cannot be ap-
plied to it again, as the body refers to the source schema. A
really recursive application happens only for rules that have
atoms that refer to the target schema also in their body. In the
following, we will use the term strongly recursive for these
rules.

In our experiments, we have developed a set of basic
translations to handle the models that can be defined with
our current metamodel. They are listed in Appendix 1. In
the next Section we will discuss arguments to confirm the
adequacy of this set of rules. Then in Section 6.2 we discuss
a few complex translations built out of these basic ones.

5 Properties of translations and their generation
5.1 Correctness, a difficult problem

In data translation (and integration) frameworks, correctness
is usually modeled in terms of information-capacity domi-
nance and equivalence. See Hull [24,25] for the fundamen-
tal notions and results and Miller et al. [28,29] for their
role in schema integration and translation. In this context, it
turns out that various problems are undecidable if they refer
to models that are sufficiently general (see Hull [25, p.53],
Miller [29, p.11-13]). Also, a lot of work has been devoted to
the correctness of specific translations, with ongoing efforts
for recently introduced models. See for example the recent
contributions by Barbosa et al. [7,8] on XML-to-relational
mappings and by Bohannon et al. [15] on transformations
within the XML world. Undecidability results have emerged

13

even in discussions on translations from one specific model
to another specific one [7, 15].

Therefore, given the generality of our approach, it seems
hopeless to aim at showing correctness in general. However,
this is only a partial limitation, as we are developing a plat-
form to support translations, and some responsibilities can
be left to its users (specifically, rule designers, who are ex-
pert users, as we will see in Section 6.1), with system sup-
port. We briefly elaborate on this issue.

We follow the initial method of Atzeni and Torlone [6],
which uses an “axiomatic” approach. It assumes the basic
translations to be correct, a reasonable assumption as they
refer to well-known elementary steps developed by the rule
designer. So given a suitable description of models and rules
in terms of the involved constructs, complex translations can
be proven correct by induction. A similar argument is men-
tioned by Batini and Lenzerini [10] in support of using trans-
formations as a preliminary step in data integration.

In MIDST, we have the additional benefit that transfor-
mations are expressed at a high-level, as Datalog rules. So,
rather than taking on faith the features of each basic transfor-
mation (as in [6]), we can automatically detect which con-
structs are used in the body and generated in the head of a
Datalog rule and then derive a concise representation of the
rule, called signature. We have shown elsewhere [4] that a
Datalog-based approach allows a formalization of the no-
tions of interest. Let us show the main points, to make this
discussion self contained.

5.2 Concise description of models

As we saw in Section 3, we define our models in terms of the
constructs they involve, taken from the supermodel. Each
construct has a fixed set of references and properties, which
are all boolean and can be constrained by means of proposi-
tional formulas. In a concise but precise way, a model can
therefore be defined by listing the constructs it involves,
each with an associated proposition, which can be seen as
a restriction (a “check” in SQL terminology) over the oc-
currences of the construct. For example, in binary aggrega-
tions of abstracts, we have, as we saw in Section 3, prop-
erties IsFunctionall and IsFunctional2, which are used to
specify the maximum cardinality of the two components
of the aggregation. Specifically, many-to-many aggregations
(relationships) have FALSE for both, and one-to-many have
TRUE for one and FALSE for the other. Therefore, if we
want to specify in a model that binary aggregations have
no restrictions on cardinalities (so one-to-one, one-to-many,
and many-to-many are all allowed), then we associate the
true proposition with the BINARYAGGREGATIONOFABSTRACTS
construct. If instead we want to forbid many-to-many, then
we would associate the proposition IsFunctionall V IsFunc-
tional2, which says that, for each occurrence of the con-

struct, at least one of IsFunctionall and IsFunctional2 has
to be TRUE.

In the following, we write the description DESC(M) of a
model M in the form {Ci(f1),...,Cu(fn)}, where Cy,...,Cy
are the constructs in the model and fi,..., f;, are the propo-
sitions associated with them, respectively.®

With suitable shorthands for the names of constructs and
properties (and distinguishing between the various types of
lexicals), the descriptions of some of the models seen in the
previous examples and shown in Figure 7 are the following:

Er1 {ABs (frue), LEXATTOFABS (true), BINAGG (true), LEX-
ATTOFBINAGG (true), GEN(frue)}: a binary ER model
with all constructs and no restrictions on them;

Er4 {ABs (true), LEXATTOFABS(true), BINAGG(isF1VisF2),
LEXATTOFBINAGG(frue), GEN(true)}; here the proposi-
tion isF1V isF2 for BINAGG specifies that relationships
are not many-to-many, as we saw above;

Er6 {ABs(true), LEXATTOFABS(true), BINAGG(isF1V isF2),
GEN(true)}; here, with respect to model er4, we do not
have LEXATTOFBINAGG (attributes of aggregations); so
this is a binary ER model with no many-to-many rela-
tionships and no attributes on relationships;

REL {AGGREG(frue), LEXCOMPOFAGG(true) }; this model has
tables and columns, with no restrictions.

We can define a partial order on models and a lattice on the
space of models, by means of the following relation, which
is reflexive, antisymmetric and transitive:

— M C M, (read M, subsumes M) if for every C(f1) € M
there is C(f2) € M, such that f; A f5 is equivalent to f;

In words, M; C M, means that M, has at least the constructs
of M; (“for every C(f1) € M there is C(f>) € M,”) and, for
those in M, it allows at least the same variants (“f] A f> is
equivalent to f;”). For the example models, we have that ErR6
C Er4 C ERI1.

A lattice can be defined on the space of models with
respect to the following operators (modulo equivalence of
propositions):

M UM, = {C(f) | C(f) € Mj and no C(f') € Mp} U
{C(f) | C(f) € My and no C(f') € M1 }U
{C(fiv L) |C(fi) €My and C(f2) € Ma}
MMy = {C(fiNf2) | C(f1) € M1,C(f2) € M2
and f] A f is satisfiable }
The notion of description can be used for schemas as
well. The description of a schema includes the constructs

appearing in it, each one with a proposition that is the dis-
junction of the propositions associated in the schema with

6 Also, when no confusion arises, we will often blur the distinction
between M and DESC(M), and write M for the sake of brevity.

14

such a construct. For example, if a schema contains two bi-
nary aggregations of abstract, both with IsFunctl equal to
TRUE and one with IsFunct2 equal to TRUE and the other
to FALSE, then the associated proposition would be the dis-
junction of isF1 AisF2 and isF1 A —isF2 and so isF1; thus,
the description of the schema would contain BINAGG(isF1).
It turns out that the description of a schema is also the de-
scription of a model and that the description of a model is
the least upper bound (L) of the descriptions of its schemas.

5.3 Signatures and applications of Datalog programs

This formalization of model and schema descriptions can be
extremely useful in our framework together with a notion of
signature for a Datalog program with the associated concept
of application of a signature to a model.

As a preliminary step, let us define the signature of an
atom in a Datalog rule. Given an atom C(ARGS) (where C
is a construct name and ARGS is the list of its arguments),
consider the fields in ARGS that correspond to properties (ig-
noring the others); let them be py:vy,..., px:vy; each v; is ei-
ther a variable or a boolean constant true or false. Then, the
signature of C(ARGS) has the form C(f), where f is a propo-
sition that is the conjunction of literals corresponding to the
properties in pip, ..., p; that are associated with a constant;
each of them is positive if the constant is frue and negated
if it is false. If there are no constants, then the proposition
is true. For example (with some intuitive abbreviations), the
signature of the atom in the body of Rule 3-i is ABS(true),
because abstracts have no properties, whereas the one in the
body of Rule 3-iii is BINAGG(IsF1), because the true con-
stant is associated with IsFunctionall.

Consider a Datalog rule R with an atom C(ARGS) as the
head and a list of atoms (Cj, (ARGS}),..., Cj,(ARGS;)) as
the body; comparison terms do not affect the signature, and
so we can ignore them.

The signature SIG(R) of rule R is composed of three
parts, (B, H,MAP):

- B (the body of SIG(R)) describes the applicability of the
rule, by referring to the constructs in the body of R; Bis a
list (Cj, (f1), ---,Cj,(fn)), where C;,(f;) is the signature
of the atom Cj;(ARGS;).

- H (the head of SIG(R)) indicates the conditions that defi-
nitely hold on the construct obtained as the result of the
application of R, because of constants in its head; H is
defined as the signature C(f) of the atom C(ARGS) in
the head.

- MAP (the mapping of SIG(R)) is a partial function that de-
scribes where values of properties in the head originate
from. It is denoted as a list of pairs where, for each prop-
erty in the head that has a variable, there is the indica-
tion of the property in the body where it comes from

(because of the safety requirements, each variable in the
head appears also in the body, and only once). Rule 3-
i has an empty MAP, because there are no properties
in the head, whereas for Rule 3-iii MAP includes the
pair “IsOptional: BINAGG(IsOptionall)”, which speci-
fies that values of property IsOptional in each ABSTRA-
CTATTRIBUTE generated by this rule are copied from
values of IsOptionall of BINARYAGGREGATIONOFAB-
STRACTS. As a consequence, if the source model has
always a constant for the property IsOptionall of BIN-
ARYAGGREGATIONOFABSTRACTS, then the same con-
stant always appears in the target model for property
IsOptional of ABSTRACTATTRIBUTE.

The application APPLg() of the signature SIG(R) of a
rule R is a function from model descriptions to model de-
scriptions that illustrates the behavior of the rule. The func-
tion APPLg() is defined on the basis of SIG(R) of R. For
the current development, the important things to know are
that it is well defined and describes the transformation in-
duced by a rule. For example, rule 3-iii applied to a model
that contains a BINARYAGGREGATIONOFABSTRACTS con-
struct with property IsFunctionall that can have the TRUE
value (so that the rule is applicable), generates a construct
description for ABSTRACTATTRIBUTE. The proposition as-
sociated with this construct depends on the proposition as-
sociated with BINARYAGGREGATIONOFABSTRACTS in the
source model: if there is some restriction on IsOptionall
then the same restriction would appear for IsOptional in the
target construct. If rule 3-iii is applied to a model that has
no BINARYAGGREGATIONOFABSTRACTS or has them but
with FALSE value for IsOptionall, then APPLg() produces
the empty model, as the body of the rule would not unify
with any construct.

Then, we can define the application APPLp() of a pro-
gram P, consisting of a set of Datalog rules Ry,...,R,, to a
model M as the least upper bound of the applications of the
R;’sto M: APPLp(M) = | [!_; APPLg,(M).

After observing that descriptions of models and signa-
tures of rules can be automatically generated, we can men-
tion the major result from our companion paper [4], which
we use as a starting point for the rest of the paper. The claim
can be stated as follows: “signatures completely describe the
behavior of programs on schemas,’ in the sense that the ap-
plication of signatures provides a ‘derivation’ of schemas
that is sound and complete with respect to the signatures of
schemas generated by programs.”

Consider Figure 18. Let S be a schema and P a Data-
log program implementing a basic translation. Then, the di-
agram in Figure 18 commutes: if from the top-left corner of
the diagram we move right and then down (apply program P

7 The result we have [4] is more general, as it refers to models, but
we prefer to state it here in terms of schemas, as it is simpler and suffi-
cient for the discussion.

15

s P(S)
: i
H APPLP() DESCLP(S))
DESC(S) > APPLp(DESC(S))

Fig. 18 Models, descriptions, programs, and signatures: a diagram that
commutes

to S and then compute the description of the schema P(S)) or
down and then right (compute the description of S and then
apply the signature of P to it), we obtain the same result, as
DESC(P(S)) always equals APPLp(DESC(S)).

If we want to be more general and refer to models, the
result says that, given a source model M; and a program P,
we are able to find the signature of the model M, to which
the schemas obtained by applying P to schemas of M; be-
long.®

In summary, this machinery allows us to know, given a
source schema and a basic translation (expressed, as in our
case, as a Datalog program), the (minimum) model to which
the schema obtained as the result of the translation would
belong.

5.4 Generation of complex translations

The formal system just introduced allows us to reason about
models and translations between them, with the ambitious
goal of automatically generating translations from a source
schema to a target model. The machinery would allow us
to try a brute-force solution, implemented as an exhaustive
search where all combinations of basic steps are tried. This
would be somehow possible, but computationally infeasible,
as the number of basic steps can grow significantly. Indeed,
without specific hypotheses, termination is not even guaran-
teed as rules could introduce and eliminate the same con-
structs in turn.

However, we can make a couple of observations that de-
rive from our initial experience with manually written trans-
lations and show that they can be generalized to work under
reasonable hypotheses. First, while we have many possible
models, we have few “families” of models, such as ER, OO,
and relational. Each of the families has a most general model
(the one with all constructs of the family and no restrictions
on its properties), which we call the progenitor of the family.

The second observation is that, within a family, most
translations just eliminate a feature (dropping a construct or

8 Given the lattice of models, a schema belongs to various models.
This method allows one to find the minimum model to which all these
schemas belong.

reducing its variants), and generate a schema that is sub-
sumed by the input. Let us call reductions the translations
that have this property; we will make this more precise. For
example, in the various translations in Figure 7, all transla-
tions between models in the ER family follow in this cate-
gory. Clearly, translations between models in different fam-
ilies are not reductions, as they typically eliminate one or
more constructs and introduce new ones. Let us use the term
transformation for them.

Now, let us consider translations where the source and
target model are in different families. Let us begin with an
intuitive argument, which we will refine soon. As the num-
ber of families is limited, it is reasonable to assume that for
each pair of families (say .#; and .%#,) there is a translation
1 » from models in family . to a model in .%,. However,
given a specific source model M| in .%| and a target model
M, in %5, such a translation need not be perfectly suitable,
for two reasons: (i) it can ignore constructs in M; and (ii) it
can generate constructs not in M, (albeit in family .%,). Such
a translation has been written for going from a model M| in
1 to amodel M) in .%,. In the worst case, M, and M| are
incomparable (neither is subsumed by the other)—the only
thing we can say is that they are both subsumed by the pro-
genitor of the family. The same holds for M, and M). Let
us proceed with the help of Figure 19: if we have a schema

My M;

M, M, M} M,

Fig. 19 Translations between families

S1 of My, then S| need not be a schema of M/ ; however, S
definitely belongs to the progenitor M} of family .%; thus,
if we have a translation (indeed, a reduction) from M} to M r
we can obtain a schema S| of M| that is indeed the appro-
priate translation of S; into M}. Then, we can apply 7] » to
S} and obtain a schema S, of M}. Again, S, need not be a
schema of M», but it is definitely a schema of the progenitor
M; of #,. So, with a reduction from M; to M, we can obtain
our desired target schema. In plain words, in this framework
translations can be composed of three macrosteps:

1. areduction within the source family

2. a transformation from the source family to the target
family

3. areduction within the target family

With respect to Figure 7, we can see that a translation from
ER3 to 002 can be composed of step (2), a reduction within

16

the ER family, step (3), a transformation to the OO family,
and (4), a reduction within the OO family.

Let us formalize the various issues.

A family % of models is a set of models defined by
means of a model M* (called the progenitor of %) and a
set of models M, 1,...,M, (the minimal models of .%#) and
contains all models that are subsumed by M* and subsume
at least one of the M, ;’s:

F={M|MCM and M,; C M, forsome 1<i<k}

In principle, we could think of families as disjoint from
one another. However, in practice, it is in some cases con-
venient to allow some exceptions. Let us start from an ob-
servation. The object-relational (OR) model has been pro-
posed in the literature as a generalization of the relational
model. Therefore, we could think of just one family, with
a rich OR model as the progenitor. While this could work
pretty well, we believe that it is more effective to consider
the relational model as a separate family, whose progeni-
tor is a minimal model in the OR family. Therefore, we as-
sume hereinafter that families can share models, but only
with a minimal model in a family that belongs also to an-
other. Also, as it is often convenient to refer to the family of
a model, then we assume that in the overlap cases the family
is that for which the model is not minimal. Given a model M
we will denote its family as FAMILY (M). Similarly, given a
schema, we can find the family to which it belongs, since, as
we said earlier, there is always a minimum model to which
a schema belongs.

With respect to families, in order to be able to perform
translations as we have discussed earlier, we need two hy-
potheses which we state and comment on in turn. We need a
definition. Given a schema S and a construct C in S, we say
a Datalog program ignores C if there is no rule whose body
unifies with constructs of S that include a literal that unifies
with C. This notion (or, better, its complement) is useful to
model the idea that we need translations that take into con-
sideration all elements of the source schema. This notion is
aimed at modeling a specific aspect related to information
capacity equivalence [24]. In fact, equivalence requires in-
vertibility, which in turn needs injectivity: if constructs are
ignored, their presence/absence cannot be distinguished. So
a necessary condition for equivalence, and a general con-
dition for translations is that translations do not ignore con-
structs. It is worth noting that in some cases it is even needed
to ignore constructs. Consider for example a very raw rela-
tional model with only tables and columns, but no foreign
keys. Here any translation from a relational model with for-
eign keys would essentially ignore them. In this case, our ap-
proach requires dummy rules, which generate no constructs,
but testify that constructs have not been forgotten.

We are now ready for the first hypothesis on our transla-
tions.

Assumption 1 For each pair of families %, %, there is a
model My in %) and a translation such that, for each
schema S| of M :

1. T does not ignore any construct of S|
2. T produces a schema that belongs to the progenitor M;
Of ﬁz

This hypothesis requires the existence of f? translations,
if f is the number of different families. On the one hand
this is not a real problem, as f is reasonably small. On the
other hand, by using Datalog rules, we reduce the need for
actual coding to a minimum. In fact, each of these trans-
lations has copy rules for the common constructs and non-
copy rules only for the constructs that need to be replaced,
namely, those in .%| and not in .%;—and, whatever the ap-
proach, these rules would be needed. In general, what we
need is that these f7 translations can be obtained by com-
bining basic translations (possibly with automatic genera-
tion); in practice, it is better to assume that these are indeed
basic translations, so they are given, or that they have been
manually defined as the “inter-family” translations of inter-
est. Also, in general there might even be pairs of families
with more than one translation, but we ignore this issue, as
it would not add much to the discussion. When two families
share a model (in the case we mentioned above), then the
transformation .7~ between them is, in both directions, the
identity, from the minimal model of one to a member of the
other or vice versa.

A further observation is useful. Assumption 1 says that
7 produces a schema of M5 . In most cases, the translation
always leads to schemas that belong to a more restricted
model, but this is just a simplification. Here we state the
assumption in this general way, because it is what suffices
for our goals.

Let us now formulate the second hypothesis we need.

Assumption 2 For each family 7, for each minimal model
M. ; of F, there is a translation from the progenitor M* of
F to M., entirely composed of reductions that do not ig-
nore constructs.

The satisfaction of Assumption 2 can be verified by con-
sidering the reductions for the family (that is, the basic trans-
lations that are reductions for the progenitor of the family)
and performing an exhaustive search on them. This can be
done in a fast way, as the number of reductions in a family
is small and most of them are commutative. Also, it is im-
portant to mention that this test has to be performed when
families are defined (or changed) and need not be repeated
for each translation nor when an individual model is defined
(provided it belongs to an existing family).

An important consequence of Assumption 2 is the possi-
bility of obtaining a translation between any pair of models
within a family.

Claim 1 If the set of basic translations satisfies Assump-
tion 2, then, for each family and each pair of models M,
and M, within it, there is a translation from M\ to M that
does not ignore constructs.

Proof. Since each model in the family is subsumed by the
progenitor M*, we have that M} T M*. Also, since the family
has a set of minimal models, we have that for each model M
in the family there is a minimal model M, that is subsumed
by it. (Either M is minimal, in which case the statement is
trivial, or there is another model M’ such that M’ C M, and
we can recursively apply the same argument, at most a finite
number of times, as the set of models is finite.) Therefore,
as M, is a model of the family, we have M, C M,.

By Assumption 2, there is a translation from M* to M,
that does not ignore any construct. This translation can be
applied to every schema of M; (since M| T M*, we have
that every schema of M| is also a schema of M*), producing
a schema that belongs to M, and so (as M, T M) also to
M,. O

The previous assumptions and arguments justify the al-
gorithm shown in Figure 20. The algorithm has an input that
is composed of a source schema S; and a target model M>,
and refers to a given set of families and a given set of rules.
Lines 1 and 2 find the families to which the source schema

FINDCOMPLETETRANSLATION(S], M)

F| = FAMILY (S))

F» = FAMILY (My)

7 = GETTRANSFORMATION(.Z},.%)
M/ = GETSOURCE(.7)

71 = GETREDUCTION(.Z|,M})

5 = GETREDUCTION(.%,,M>)
return .70 .7 0 %

Nownkwn -~

Fig. 20 Algorithm FINDCOMPLETETRANSLATION

and the target model belong, respectively. Line 3 finds the
transformation .7~ between the two families, whose exis-
tence is guaranteed by Assumption 1. Then, line 4 computes
the source model M| for transformation 7. Next, line 5
finds the sequence of reductions needed to go from the pro-
genitor of .#| to M| (on the basis of Assumption 2) and
line 6 does the same within the target family. Finally, the
algorithm returns a translation that is the composition of 77,

7, and 2.

Claim 2 If the set of basic translations satisfies Assump-
tions 1 and 2, then the algorithm in Figure 20 is correct, that
is, for every schema S; and model M5, it finds a translation
of S1 into M, that does not ignore constructs.

The Algorithm is indeed used in our tool for the auto-
matic generation of translations. In the Appendix, we show
that the list of basic translations we used satisfies Assump-
tions 1 and 2 and so the translation can always be generated.

6 Implementation and experimentation
6.1 The MIDST Tool

We developed a tool to validate the concepts in previous
sections and to test their effectiveness. The main parts of
the MIDST tool are the generic data dictionary, the rule
repository and a plug-in based application that handles the
components in a modular way. The main components of
a first version, recently demonstrated [2], include a set of
modules to support users in defining and managing models,
schemas, Skolem functions, translations, import and export
of schemas. A second version, just completed, includes two
more components: one to extract signatures from rules and
models and a second one to generate translation plans.

It is useful to discuss the tool by referring to three cat-
egories of users, corresponding to three different levels of
expertise.

— The designer can define or import/export schemas for
available models and perform translations over them.

— The model engineer, a more sophisticated user, can de-
fine new models by using the available metaconstructs.

— The metamodel engineer can add new metaconstructs to
the metamodel and define translation rules for them; in
this way she can extend the set of models handled by the
system. This is clearly an even more expert user.

All of the above activities can be done without accessing the
tool’s source code. The definition of a model or of a schema
involves populating tables of the dictionary, whereas the def-
inition of translations involves inserting elements in the rule
repository.

Let us present the tool by showing first how models and
schemas can be defined and then how translations are per-
formed.

We start with the typical activity of the model engineer,
the definition of a model. This is done by “creating” a new
model, giving it a name, and then specifying its constructs.
This latter activity is the interesting one, and it is done (in-
teractively) in two main steps: (i) choosing a metaconstruct
from a pop-up menu and giving it a name within the model,
and (ii) adding the desired properties available for the cho-
sen metaconstruct. For instance, suppose the user is creat-
ing a simplified version of the ER model, called ERSimple.
The model engineer, in order to define the first construct,
will probably specify that he wants to add a construct corre-
sponding to the Abstract metaconstruct (see Figure 21) and
call it “Entity.” Then, he will define AttributeOfEntity, with
reference to Lexical, and so on. During the definition pro-
cess, the model engineer can add, remove, and alter con-
structs and construct properties. When the model is com-
plete, the user requests a finalization, during which the sys-
tem creates the corresponding dictionary structure. Once a

ModelDefinition

File Madel Construct Toals

Odorns

;; Models
3 &OhjectOrientEd
2 “L EntityRelationship

LW

2] “L Relational

1+l ObjectRelationsl
by & EDSirnla
| ﬁ Export Madel

:E Madel Report

[} Add construct . Adaregation

Abstract
[y Renama Madel

StruckQF Attribukes
@ Save:..

AbstractAttribute
BinaryAgagregationOFAbstracts
m Delste Madsl

AggregationOfAbstracts
ComponentOf AggregationOf Abstracts
Generalization

Fig. 21 Creation of a new construct in a model

<?xml version="1.0" encoding="UTF-§" 7>
- «<model shorthame="ERS" name="ERSimple">
- <constructs=
- =construct name="Entity" signature="true" bonds="true">
<metaConstruct name="Abstract" />
<properties />
<references /=
</constructz
- =zconstruct name="AttributeOfEntity" signature="true" bonds="true">
<metaConstruct name="Lexical" /=
- «properties:
- <property name="isKey">
<metaProperty name="isIdentifier" />
=/property=
+ <property name="isOptional">
+ <property name="type">
</properties=
- «references=
- <reference to="Entity" name="abstractOID"=>
<metaReference name="abstractOID" /=
z/reference=
</references=
<fconstruct=
+ =construct name="Relationship" signature="true" bonds="true"=
</constructs >
</model=

Fig. 22 The XML file for describing models

model has been defined, the user can also save the descrip-
tion of the model as an XML file, with a specific format. In
this way, it is possible to build a repository of models that
can be easily imported when the tool is initialized. Figure 22
shows a portion of an XML file that contains the description
of a version of the ER model.

Let us now turn our attention to the other main class of
users, designers, who define schemas and request their trans-
lations. Designers may build schemas through an interactive
interface. After choosing the model, they can define the var-
ious elements, one at the time, by choosing a construct of
the model and then giving a name and the associated prop-
erties and references, if needed. For example, the user can
define Employee, corresponding to the Entity construct, and
add some attributes (AttributeOfEntity) to it, such as SSN
and FullName. The two steps for creating SSN are shown

~» SchemaDefinition

Fil= Scheme ©Object Taals

(=1~ Emplayee: Entity

ROl n 2D B
,'q‘a Schemas o I :
=i Employessi ERSimple Reports 3

ﬁ Expark Scheme

% FullMame: Attribute|
L] isKey: boolean |
5] isOptional: b-:utj
1] type: varchar [| Ey Rename Scheme

-G abstractOID: Ei
| @ Save...

m Delete Scheme

Entity
AttributeOFEnticy
Relationship

[} new schemsobiect ’

Fig. 23 Creation of a new AttributeOfEntity

|2/ Add Scheme Object
D SchemeCbject Adding

General

MName SSM

Properties

iskey
isOptional]

bype varchar

References

abstrackQID Employee |

(o) L=]

Fig. 24 Specification of name, properties and reference for a new At-
tributeOfEntity

in Figures 23 (choice of AttributeOfEntity among the con-
structs) and 24 (specification of the details).

The interactive definition has been useful for testing el-
ementary steps (or for changes to existing schemas), but it
would not be effective in practical settings. Therefore, as
a major option, we have developed an import (and export)
module. It relies on a persistence manager for the super-
model’s constructs. Data are handled in an object represen-
tation, where each construct is represented by a class. Then,
according to the external system of interest, the persistence
manager interacts with specific components. We have de-
veloped two main import-export components, one for IBM
DB2, as a representative of relational and object-relational
systems (with also most of the object-oriented features of
interest for data models) and the other for XML documents
with schemas (according to a reasonable subset of XSD).

19

The development of additional modules would mainly re-
quire attention to the specific syntax.

As a support to schema definition and management, the
tool offers features for the visualization of schemas, and we
will see them in the next subsection, while discussing exam-
ple translations.

After the schema definition phase, the user has to choose
how to translate the schema. In the first version of the tool,
the designer had to build complex translations by manually
composing basic ones out of a list of the available ones. The
system applies them in sequence, generating an intermedi-
ate schema for each step, which can be used for documen-
tation and verification. In the second version of the tool, the
designer just has to specify the source schema (and so its
model) and the target model, and the system finds a trans-
lation, on the basis of the algorithm illustrated in Section 5.
Figure 25 shows a screenshot of the interface used to re-
quest an automatic translation. Let us observe that in the up-
per part there are the description of the input schema (left)
and that of the target model (right) and in the lower part the
sequence of translations found by the system.

Finally, let us consider the most sophisticated user, the
metamodel engineer. She can define new basic transforma-
tions by writing Datalog rules or reusing some of the ex-
isting ones. The most important task is the definition and
management of the supermodel. This is a very delicate task
and requires a good knowledge of data models as well as
of the supermodel itself. Because of the nature of the su-
permodel, such tasks are quite rare: after a transitory phase
where metaconstructs are introduced into the supermodel,
translations and Skolem functions involving the new meta-
constructs are created, modifications should tend to zero and
reuse should be total.

Translation rules are stored in text files. Any text editor
can be used to write Datalog rules first and the basic transla-
tion then. A basic translation is a list of file names containing
Datalog rules. The application of a basic translation means
to apply all its Datalog rules in the same order as they occur
in the basic translation. A tool to support the user in the def-
inition of translation rules has been developed. It supports
Datalog syntax highlighting and auto-completion of literals,
Skolem functions and variables used in the rule. These help
functions are possible by leveraging on the metadata asso-
ciated with the constructs and the Skolem functions stored
in the repository. There is also a support to the management
of basic translations, allowing the user to add or remove a
Datalog rule, or change the order in which the Datalog rules
occur in the basic translation.

A Datalog translation rule uses Skolem functions. The
tool provides a search feature to look up already defined
Skolem functions for a specific construct, and allows the
creation of new ones by selecting the target construct, giv-
ing the function a name and adding a number of parameters.

Once a Skolem function is defined, its description is stored
as metadata in the dictionary.

We can say few words about performance of the transla-
tion process, although it is not the focus of this work. First
of all, it is worth mentioning that we decided to implement
our own Datalog engine, because of the need for the OID-
invention feature and for the ease of integration with our re-
lational dictionary. The algorithm that generates SQL state-
ments from Datalog rules performs well. It generally takes
seconds and it has a linear cost in the size of the input (num-
ber of rules). Performance of the translation executions de-
pends on the number of SQL statements (number of rules)
to be executed and on the number of join conditions each
rule implies. Moreover, the structure of the dictionary and
the materialization of Skolem functions do not help perfor-
mance. However, even if efficiency can be improved, the
translation of schemas is performed in a few seconds.

6.2 Experiments

In this section we discuss the experiments we made with our
MIDST tool: we explain the methodology used to test the
tool and then illustrate in some detail a few actual examples,
which have been also demonstrated recently [2].

To test all the features of the tool we mainly used syn-
thetic schemas and databases, in order to be cost-effective in
the analysis of the various features of models and schemas.

We have tested the tool using two different points of
views, one “in-the-small” and the other “in-the-large.” For
the testing in-the-small, we performed two sets of experi-
ments. The first set was driven by the rules: we tested every
single Datalog rule of each basic translation, to verify the
correctness of the individual substeps. The second set was
driven by model features: we defined many (a few hundred)
ad-hoc schemas, each one with a specific pattern of con-
structs, in order to verify that such a pattern is handled as
required. In this way, we have verified the correctness of ba-
sic translations, which is a requirement of our approach, as
we discussed in Section 5.

For the testing in-the-large, we used a set of more com-
plex schemas. We considered some significant models, rep-
resentatives of the various families (the progenitor and two
restricted ones for each family), and defined one schema for
each of them, with all the features of such a model. Then, we
translated them into other models of interest. In this case,
the translation process for these schemas required the ap-
plication of a number (from three to eight) of basic transla-
tions in the set we mentioned in Section 4 (and listed in Ap-
pendix 1). Here, we initially built complex translations by
manually composing basic ones (as this was the only way
in the first version of our tool) and then experimented with
the automatic generation, and obtained the same sequences

20

AutomaticSignatureApplicationTool g@@
Fil=
General infa For signakurs application
| 11 ER (EntityRelationship) [] |relational (Reh [v]
SQURCE: & |TARGET: |
-= BinaryA ggregationOfAbstracts: (((({NOT sOptionall) AND | |-= Foreigney: true |
isFunctionall) AND isIdentified) AND isOptional2) AND (NOT -= Lexical: trus
igFunctionall}) -= ComponsntOfForeigniley; true
== Lexical: (((MOT isMullable) AND (HOT i=Optional)) AND -= M gomesation: thue
sldentifier)
-= (ensralization: 1sTotal
== ChildOfGensralization: true
-= Abstract: true
[l (e
¢ (2] | ls] (2] |
\izw macrorule obtained from automatic translation
Result of the Translation:
THE AUTOMATIC TRAMSLATION HAS SELECTED THE FOLLOWING MACRORULES: A
09, elimMany2ManyBinAggOfAbs bxt
14, binAgaOfAbs4Gen. txt
18, aggAndFE4AbsAndBinAggOfAbs bk
. |
£ i
|. Translate 4

Fig. 25 Request for automatic translation

of basic translations. In some cases, when there are various
acceptable sequences, the tool generated one of them.

Let us illustrate in detail some complete transformation
examples. As we discussed in Section 5, our translations are
in general composed of (i) reductions within the family of
the source model, (ii) a translation to the family of the tar-
get model, and (iii) reductions within the target family. In
most cases the final portion is not needed, as reductions oc-
cur mainly in the source family. Therefore, we comment on
a few examples with just two phases and then a final one that
has the third phase.

As a first case, let us consider the translation from a bi-
nary ER model with all our features, to an object-oriented
model with generalizations. In this case, the following re-
ductions would be needed

— eliminate attributes of relationships, possibly introduc-
ing new entities and relationships (basic translation 7 in
the appendix);

— eliminate many-to-many relationships, introducing addi-
tional entities and one-to-many relationships (translation
8)

The schema obtained in this way can be directly translated
into the object-oriented model, by means of translation 17.

Therefore, the complex translation would be composed of
the sequence (7, 8, 17).

If instead the target model were the relational one, then
we would need the same reduction steps as above, plus a
step to eliminate generalizations before the final translation.
There are in fact three different translations to perform this
task (12, 13, and 15), according to the various ways of elim-
inating generalizations (Batini et al. [9, pp.283-287]). In the
manual approach, the designer would choose the preferred
one; in the automatic one there would be one picked by the
tool, with the possibility for the designer to replace it. Then
a translation into the relational model would be possible by
means of translation 19. A possible sequence in this case
would therefore be (7, 8, 12, 19). Our tool also provides a
customization feature, where the designer can specify the
selective application of rules. In this case, with a two-level
generalization, for example Person, Staff, and Professor, we
could specify that the first level is replaced with a relation-
ship (translation 15), so the entities Person and Staff are
kept, whereas the second level is replaced by merging the
child entity into the parent one (translation 13), and so the
entity Professor disappears, as its attributes are moved to
Staff. In this way, the final relational schema would contain
two tables, Person and Staff.

21

- <xsd:schema xmins:xsd="http://www.w3.0rg/2001/XMLSchema">
- <xsd:element name="SCHOOL">
- <xsd:complexType=
- =xsd:sequence:
- «xsd:element name="DEPT" maxOccurs="unbounded">
- <xsd:complexType:>
- «xsd:sequences

<xsd:element name="NAME" nillable="false" type="xsd:string" /=
- <xsd:element name="PROF" nillable="false" minOccurs="1" maxOccurs="unbounded"=

- «<xsd:complexType=
- «xsd:sequencez

<xsd:element name="PROF_ID" nillable="false" type="xsd:string" /= PROF ID
<xsd:element name="NAME" nillable="false" type="xsd:string" /> MNAME

- «<xsd:element name="CONTACTS" nillable="false">
- «xsd:complexType= H PRIVATEC

- <xsd:sequence>

<xsd:element name="PHONE" nillable="true" type="xsd:string" />
<xsd:element name="MAIL" nillable="true" type="xsd:string" /=

</xsd:sequence=
</xsd:complexType=
</xsd:element=
+ <xsd:element name="PRIVATEC" nillable="false">

+ «<xsd:element name="STUDENT" nillable="false" minOccurs="0" maxOccurs="unbounded"=

</xsd:sequence=
</xsd:complexType=
</xsd:elements=
=/xsd:sequence>
</xsd:complexType>
</xsd:element:=
</xsd:sequencex
</xsd:complexType=
- «<xsd:key name="PROF_KEY">
<xsd:selector xpath="./DEPT/PROF" /=
<xsd:field xpath="PROF_ID" />
</xsd:key=
</xsd:element=
«/xsd:schemaz

Fig. 26 An XSD file and its representation in MIDST

B STUDENT_PROF_fk = STUDENT
3 NAME
(?) PROF_PROF_ID_Fk
S| OF
PROF ID
T H
A DEPT
DEPT_DEPT_id_fk NAME
PHONE b DEPT id
ROF_DEPT_fk

= DEPT

MNAME

=| (+) PROF

HOMEPHONE

H CONTACTS

BHONE

H (%) STUDENT

MNAME
LEVEL
B STUDENT_PROF_fk STUDENT
ﬁ MAME
LEVEL
=Y
PROF_PROF_ID_Fl
OF NewlD
PROF 1D
NAME DEPT
DEPT_DEPT_id_Ffk AME
PHONE
AN DEPT id
HOMEPHONE
P ROF_DEPT_fk

Fig. 27 An intermediate and the final result of the translation from XSD to a relational schema

As a more complex example, we show, with also some
screenshots, the translation from an XML Schema Descrip-
tion (XSD) to a relational schema. The input file and its
graphical visualization via the tool after importing it are
shown in Figure 26. The structure is nested at two levels:
each department has a name and one or more professors and,
for each professor, we have some contact information and
zero or more students. According to our supermodel, this
schema is represented by means of an Abstract (Dept), a first
level multivalued StructureOfAttributes (Prof), various Lex-
icals (including Name of Dept, ProfID, Name of Prof) and
some nested StructureOfAttributes (PrivateContacts, Con-
tacts and Students; the latter is multivalued and the other

two monovalued). The translation requires the unnesting of
sets and structures, introducing new first level elements and
foreign keys and flattening the attributes of the structures,
respectively (basic translations 1 and 2 in the list). The re-
sult of this sequence of steps still belongs to the XSD fam-
ily and it is depicted in Figure 27, on the left. Finally we
could use the translation from the XSD family to the rela-
tional family (translation 20, which replaces elements and
their attributes with tables and columns). The final result of
the translation is shown in Figure 27, on the right. (In our
tool, and so in the figures, boxes with square corners denote
abstracts, boxes with rounded corners denote aggregations
of lexicals and boxes with dashed lines denote foreign keys).

22

As a final example, we mention a case where all three
phases are needed. Assume that our set contains basic trans-
lation 15, as the only means to eliminate generalizations (so,
it does not contain translations 12, 13, 14 and 16). As trans-
lation 15 introduces binary aggregations, it cannot be used
within the object-oriented family. In this case, if we want to
go from an object-oriented model with structured attributes,
to an ER model without generalizations, we need first a re-
duction within the object-oriented family to flatten attributes
(translation 2), then we can apply the translation to the ER
family (18) and finally the reduction within the ER model to
eliminate generalizations (15).

7 Related Work

This paper is an extended version of a portion of a confer-
ence paper [1] and in some sense also of another, older con-
ference paper [6] (which has never had a journal version).
With respect to those papers, Sections 5 and 6.1 are com-
pletely new, and most of the other discussions are richer, in
particular the one in Section 2 on the space of models, which
gives an original perspective on the approach. The confer-
ence paper [1] also includes an initial proposal for handling
data translation, which is not covered here. The tool pre-
sented here in Section 6.1 has also been demonstrated [2].

Various proposals exist that consider schema and data
translation. However, most of them only consider specific
data models. We comment here on related pieces of work
that address the problem of model-independent translations.

The term ModelGen was coined in [11] which, along
with [12], argues for the development of model management
systems consisting of generic operators for solving many
problems involving metadata and schemas. An example of
using ModelGen to help solve a schema evolution problem
appears in [11].

An early approach to ModelGen (even before the term
was coined) was MDM, proposed by Atzeni and Torlone [6].
The basic idea behind MDM and the similar approaches
(Claypool and Rundensteiner et al. [18, 19] Song et al. [37],
and Bézivin et al [14]) is useful but offers only a partial so-
lution to our problem. In addition, their representation of the
models and transformations is hidden within the tool’s im-
perative source code, not exposed as more declarative, user-
comprehensible rules. This leads to several other difficulties.
First, only the designers of the tool can extend the models
and define the transformations. Thus, instance level transfor-
mations would have to be recoded in a similar way. More-
over, correctness of the rules has to be accepted by users as a
dogma, since their only expression is in complex imperative
code. And any customization would require changes in the
tool’s source code. All of these problems are overcome by
our approach.

There are two concurrent projects to develop ModelGen.
The approach of Papotti and Torlone [33] is not rule-based.
Rather, their transformations are imperative programs, with
the weaknesses described above. Their translation is done by
translating the source data into XML, performing an XML-
to-XML translation expressed in XQuery to reshape it to be
compatible with the target schema, and then translating the
XML into the target model. This is similar to our use of a
relational database as the “pivot” between the source and
target databases.

The approach of Bernstein, Melnik, and Mork [13,31] is
rule-based, like ours. However, unlike ours, it is not driven
by a relational dictionary of schemas, models and transla-
tion rules. Instead, they focus on flexible mapping of inher-
itance hierarchies and the incremental regeneration of map-
pings after the source schema is modified. They also propose
view generation and so instance translation.

Bowers and Delcambre [16] present Uni-Level Descrip-
tion (UDL) as a metamodel in which models and translations
can be described and managed, with a uniform treatment of
models, schemas, and instances. They use it to express spe-
cific model-to-model translations of both schemas and in-
stances. Like our approach, their rules are expressed in Dat-
alog. Unlike ours, they are expressed for particular pairs of
models.

Other approaches to schema translation based on some
form of metamodel, thus sharing features with ours, were
proposed by Hainaut [22,23] and Boyd, Poulovassilis and
McBrien [17,27,35].

Data exchange is a different but related problem, the de-
velopment of user-defined custom translations from a given
source schema to a given target one, not the automated trans-
lation of a source schema to a target model. It is an old
database problem, going back at least to the 1970’s [36].
Some recent approaches are in Cluet et al. [20], Milo and
Zohar [30], and Popa et al. [34].

8 Conclusions

In this paper we showed MIDST, an implementation of the
ModelGen operator that supports model-generic translation
of schemas. The experiments we conducted confirmed that
translations can be effectively performed with our approach.
The main contributions are (i) the visible dictionary, (ii) the
specification of rules in Datalog, which makes the specifica-
tion of translations independent of the engine that executes
them, and (iii) the techniques to generate translations out of
their specification.

Current work concerns the customization of translation,
data level translations and applications of the technique to
typical model management scenarios, such as schema evo-
lution and round-trip engineering [11].

23

Acknowledgements

We would like to thank Luigi Bellomarini, Francesca Bu-
giotti, Fabrizio Celli, Giordano Da Lozzo, Riccardo Pietruc-
ci, Leonardo Puleggi and Luca Santarelli, for their work in
the development of the tool and Chiara Russo for contribut-
ing to the experimentation and for many helpful discussions.

References

10.

11.

. Atzeni, P, Cappellari, P, Bernstein, P.A.: Model-independent

schema and data translation. In: EDBT Conference, LNCS 3896,
pp. 368-385. Springer (2006)

Atzeni, P., Cappellari, P., Gianforme, G.: MIDST: model indepen-
dent schema and data translation. In: SIGMOD Conference, pp.
1134-1136. ACM (2007)

Atzeni, P., Del Nostro, P.: Management of heterogeneity in the Se-
mantic Web. In: ICDE Workshops, p. 60. IEEE Computer Society
(2006)

Atzeni, P., Gianforme, G., Cappellari, P.: Reasoning on data mod-
els in schema translation. In: FOIKS Symposium, LNCS 4932,
pp. 158-177. Springer (2008)

Atzeni, P., Torlone, R.: A metamodel approach for the manage-
ment of multiple models and translation of schemes. Information
Systems 18(6), 349-362 (1993)

Atzeni, P., Torlone, R.: Management of multiple models in an ex-
tensible database design tool. In: EDBT Conference, LNCS 1057,
pp. 79-95. Springer (1996)

Barbosa, D., Freire, J., Mendelzon, A.O.: Information preserva-
tion in XML-to-relational mappings. In: XSym Workshop, LNCS
3186, pp. 66-81. Springer (2004)

Barbosa, D., Freire, J., Mendelzon, A.O.: Designing information-
preserving mapping schemes for XML. In: VLDB, pp. 109-120
(2005)

Batini, C., Ceri, S., Navathe, S.: Database Design with the Entity-
Relationship Model. Benjamin and Cummings Publ. Co., Menlo
Park, California (1992)

Batini, C., Lenzerini, M.: A methodology for data schema integra-
tion in the entity relationship model. IEEE Trans. Software Eng.
10(6), 650-664 (1984)

Bernstein, P.A.: Applying model management to classical meta
data problems. In: CIDR Conference, pp. 209-220 (2003)
Bernstein, P.A., Halevy, A.Y., Pottinger, R.: A vision of manage-
ment of complex models. SIGMOD Record 29(4), 55-63 (2000)

. Bernstein, P.A., Melnik, S., Mork, P.: Interactive schema trans-

lation with instance-level mappings. In: VLDB, pp. 1283-1286
(2005)

Bézivin, J., Breton, E., Dupé, G., Valduriez, P.. The ATL
transformation-based model management framework. Research
Report 03.08, IRIN, Université de Nantes (2003)

. Bohannon, P., Fan, W., Flaster, M., Narayan, P.P.S.: Information

preserving XML schema embedding. In: VLDB, pp. 85-96 (2005)
Bowers, S., Delcambre, L.M.L.: The Uni-Level Description: A
uniform framework for representing information in multiple data
models. In: ER Conference, LNCS 2813, pp. 45-58. Springer
(2003)

. Boyd, M., McBrien, P.: Comparing and transforming between data

models via an intermediate hypergraph data model. J. Data Se-
mantics IV pp. 69-109 (2005)

. Claypool, K.T., Rundensteiner, E.A.: Sangam: A transformation

modeling framework. In: DASFAA Conference, pp. 47-54 (2003)

. Claypool, K.T., Rundensteiner, E.A., Zhang, X., Su, H., Kuno,

H.A., Lee, W.C., Mitchell, G.: Sangam - a solution to support mul-
tiple data models, their mappings and maintenance. In: SIGMOD
Conference, p. 606 (2001)

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Cluet, S., Delobel, C., Siméon, J., Smaga, K.: Your mediators need
data conversion! In: SIGMOD Conference, pp. 177-188 (1998)
De Virgilio, R., Torlone, R.: Modeling heterogeneous context in-
formation in adaptive Web based applications. In: ICWE Confer-
ence, pp. 56-63. ACM (2006)

Hainaut, J.L.: Specification preservation in schema transforma-
tions - application to semantics and statistics. Data Knowl. Eng.
19(2), 99-134 (1996)

Hainaut, J.L.: The transformational approach to database engi-
neering. In: GTTSE, LNCS 4143, pp. 95-143. Springer (2006)
Hull, R.: Relative information capacity of simple relational
schemata. STAM J. Comput. 15(3), 856-886 (1986)

Hull, R.: Managing semantic heterogeneity in databases: A the-
oretical perspective. In: PODS Symposium, pp. 51-61. ACM
(1997)

Hull, R., King, R.: Semantic database modelling: Survey, applica-
tions and research issues. ACM Computing Surveys 19(3), 201-
260 (1987)

McBrien, P., Poulovassilis, A.: A uniform approach to inter-model
transformations. In: CAiSE Conference, LNCS 1626, pp. 333-348
(1999)

Miller, R.J., Toannidis, Y.E., Ramakrishnan, R.: The use of infor-
mation capacity in schema integration and translation. In: VLDB,
pp- 120-133 (1993)

Miller, R.J., Ioannidis, Y.E., Ramakrishnan, R.: Schema equiva-
lence in heterogeneous systems: bridging theory and practice. Inf.
Syst. 19(1), 3-31 (1994)

Milo, T., Zohar, S.: Using schema matching to simplify heteroge-
neous data translation. In: VLDB, pp. 122-133 (1998)

Mork, P., Bernstein, P.A., Melnik, S.: Teaching a schema translator
to produce O/R views. In: ER Conference, LNCS 4801, pp. 102—
119. Springer (2007)

Paolozzi, S., Atzeni, P.: Interoperability for semantic annotations.
In: DEXA Workshops, pp. 445-449. IEEE Computer Society
(2007)

Papotti, P., Torlone, R.: Heterogeneous data translation through
XML conversion. J. Web Eng. 4(3), 189-204 (2005)

Popa, L., Velegrakis, Y., Miller, R.J., Herndndez, M.A., Fagin, R.:
Translating Web data. In: VLDB, pp. 598-609 (2002)
Poulovassilis, A., McBrien, P.: A general formal framework for
schema transformation. Data Knowl. Eng. 28(1), 47-71 (1998)
Shu, N.C., Housel, B.C., Taylor, R.W., Ghosh, S.P., Lum, V.Y.:
Express: A data extraction, processing, amd restructuring system.
ACM Trans. Database Syst. 2(2), 134-174 (1977)

Song, G., Zhang, K., Wong, R.: Model management though graph
transformations. In: IEEE Symposium on Visual Languages and
Human Centric Computing, pp. 75-82 (2004)

Ullman, J.D., Widom, J.: A First Course in Database Systems.
Prentice-Hall, Englewood Cliffs, New Jersey (1997)

Appendix 1. Basic translations and their completeness

This appendix lists the set of basic translations used in our
experiments, for the supermodel illustrated in Section 3.3
(and specifically in Figure 17).

1.

eliminate multivalued structures of attributes in an ab-
stract, by introducing new abstracts and foreign keys
eliminate (nested, monovalued) structures of attributes
in an abstract, by flattening them

eliminate (nested, monovalued) structures of attributes
in an aggregation, by flattening them

24

4. eliminate foreign keys involving abstracts, by introduc-
ing abstract attributes
5. eliminate abstract attributes, replacing them with foreign
keys involving abstracts
6. eliminate lexicals of aggregations of abstracts, by mov-
ing them to abstracts (possibly new)
7. eliminate lexicals of binary aggregations of abstracts, by
moving them to abstracts (possibly new)
8. eliminate many-to-many binary aggregations, by intro-
ducing new abstracts and binary aggregations of them
9. eliminate n-ary aggregations of abstracts, by introducing
new abstracts and binary aggregations of them
10. replace binary aggregations of abstracts with aggrega-
tions of them
11. nest abstracts and abstract attributes within referencing
abstracts
12. eliminate generalizations, by keeping the leave abstracts
and merging the other abstracts into them
13. eliminate generalizations, by keeping the root abstracts
and merging the other abstracts into them
14. eliminate generalizations, by keeping all abstracts and
relating them by means of (n-ary) aggregations (that in-
volve two abstracts)
15. eliminate generalizations, by keeping all abstracts and
relating them by means of binary aggregations
16. eliminate generalizations, by keeping all abstracts and
relating them by means of abstract attributes
17. replace (one-to-many) binary aggregations of abstracts
with abstract attributes
18. replace abstract attributes with (one-to-many) binary ag-
gregations of abstracts
19. replace abstracts and binary (one-to-many) aggregations
of them with aggregations (of lexicals) and foreign keys
20. replace abstracts and abstract attributes with aggrega-
tions (of lexicals) and foreign keys
21. replace aggregations (of lexicals) and foreign keys with
abstracts and binary aggregations of them
22. replace aggregations (of lexicals) and foreign keys with
abstracts and foreign keys over them
23. replace aggregations (of lexicals) and foreign keys with
abstracts and abstract attributes

We briefly comment on the completeness of this set of
rules with respect to the models used in our experiments, de-
scribed by the table in Figure 17. We need to show that As-
sumptions 1 and 2 are satisfied. Let us begin with Assump-
tion 2, so we describe the minimal models. Here, it suffices
to list the minimal models in each family and the sequences
of reductions that form a translation from the progenitor of
the family to them, as follows:

— (n-ary) Entity-Relationship: we have a minimal model
with no generalizations and no attributes (lexicals) on

| ER | B-ER | Obj | OR | Rel | XSD
ER - 9 917 (917919 917,11
B-ER 10 - 17 | 17] 19 | 17,11
Obj 18,10 18 - - 20 5,11
OR 18,10 18 23 - 20 11
Rel 21,10 21 23 - - 22
XSD || 4,18,10 | 4,18 | 4 1 20 -

Fig. 28 Translations between families

aggregations; therefore, the reduction is composed of 6
and 14 (or 12 or 13);

— Binary Entity-Relationship: one minimal model again,
with no generalizations and no lexicals on binary aggre-
gations and no many-to-many aggregations; the reduc-
tionis 7, 15 (or 12 or 13), &;

— Object: one minimal model, with no generalizations and
no structures of attributes: the reduction is 2, 16 (or 12
or 13);

— Object-Relational: here there are three minimal models,
the progenitors of the relational model (with a reduction
2,3, 16 (or 12 or 13), 20) and of the object model (4, 23)
and a model with no structures of attributes in abstracts
and no generalizations, for which the reduction is 2, 16
(or 12 or 13);

— Relational: here, for the sake of simplicity, we have han-
dled just one model, so the reduction is trivial;

— XSD: one minimal model, where structures of attributes
are only monovalued; the reduction is just translation 1.

With respect to Assumption 1, we need to show that for
each pair of families we have a translation from one to the
other, and viceversa. This is shown in the table in Figure 28,
where each cell indicates the translation or the sequence of
translations needed to go from the model associated with
the row to the model associated with the column. Itis worth
noting that, in some cases, the cell contains two or even three
basic translations; then, with reference to the discussion we
made in Section 5 after Assumption 1, we can think that the
system has a composition of these translations defined as a
basic one.

