
Models for NoSQL databases:
a contradiction?

Paolo Atzeni
Dipartimento di Ingegneria

Sezione di Informatica e Automazione

Based on work done with (or by!)
F. Bugiotti, L. Rossi, L. Cabibbo, R. Torlone and others

Stockholm, 21 October 2015

Content

•  A personal (and questionable …) perspective on the role models
have for NoSQL systems:
–  NoSQL systems aim at flexibility --- some of their advocates

believe that traditional models are now over
–  Models cannot be used in the same way as for traditional

applications, but some ideas are meaningful
–  I will discuss two research experiences in the area

•  A disclaimer:
–  Personal means that I will refer to projects in my group (with

some contradiction, as currently my involvement in the topic,
and in research in general, is decreasing…)

21/10/2015 Paolo Atzeni 2

What is modeling for?

•  Description at the appropriate level of abstraction
•  Comprehension
•  Communication
•  Support to design and development (including coding and

maintenance!)
•  Performance management

21/10/2015 Paolo Atzeni 3

Conceptual modeling

•  Born in the database world, with great success for the design of
traditional databases

•  Spread in many neighboring fields

21/10/2015 Paolo Atzeni 4

A neighboring field, a talk from ER 1998

21/10/2015 Paolo Atzeni 5

21/10/2015 Paolo Atzeni 6

Introductiory DB Course: slide 1 J

•  DataBase Management System (DBMS)
–  System that handles data sets that are

•  big
•  persistent
•  shared

 guaranteeing
•  privacy
•  relaiability and fault-tolerance
•  efficiency
•  effectiveness

21/10/2015 Paolo Atzeni 7

Relational DBMSs

•  Born in the Seventies (more than 35 years ago)
•  Effective and efficient for "business" applications (accounting,

reservations, …) with simple, specific (but common)
requirements:
–  persistency, sharing, reliability
–  data with simple structure and simple types (numbers,

strings)
–  many short transactions with ACID properties (OLTP)
–  Possibly complex queries, with declarative specifications and

"associative" access

In more technological terms

(Stonebraker & Cattel, CACM June 2011)

•  "General-purpose traditional row stores"
–  Disk-oriented storage
–  Tables stored row-by-row on disk (hence, a row store)
–  B-trees as the indexing mechanism
–  Dynamic locking as the concurrency control mechanism
–  A write-ahead log (WAL) for crash recovery
–  SQL as the access language
–  A "row-oriented" query optimizer and executor

21/10/2015 Paolo Atzeni 8

Are we satisfied with relational databases?

•  In many cases we are
•  But in some cases we have always complained

21/10/2015 Paolo Atzeni 9

A stament we have made for 25+ years J

•  With the progress in computing systems new application
requirements have emerged, for which relational technology is
probably not adequate

(F. Bancilhon: Object-Oriented Database Systems. PODS 1988: 152-162)

21/10/2015 Paolo Atzeni 10

21/10/2015 Paolo Atzeni 11

New application areas (in 1988 J)

•  Support to design and production
–  CASE (Computer-Aided Software Engineering)
–  CAD (Computer-Aided Design)
–  CAM (Computer-Aided Manufacturing)

•  Document management
–  office automation and text management
–  Multimedia data

•  More
–  science and medicine
–  AI systems

Another recurring claim

21/10/2015 Paolo Atzeni 12

(Michael Stonebraker, Ugur Çetintemel: "One Size Fits All": An Idea
Whose Time Has Come and Gone. ICDE 2005: 2-11)

21/10/2015 Paolo Atzeni 13

"One-size-fits-all"

•  Indeed, relational systems currently offer one interface (SQL)
but with various implementations, at least two, for the two major
application families:
–  OLTP (On-Line Transaction Processing)
–  OLAP (On-Line Analytical Processing)

Probably mpre than two engines (in 2005 …)

21/10/2015 Paolo Atzeni 14

… and later, after 2005

•  Lack of satisfaction, in the Internet/Web world
–  rigidity of the relational model (emerged since the advent of

the Web, only partially satisfied with XML)
–  need for scalability, for simple operations over huge

quantities of data
•  More generally:

–  "heaviness" of relational systems, in terms of performance
and of administration

21/10/2015 Paolo Atzeni 15

The NoSQL answer …

•  New systems with
–  Scalability of simple operations over many nodes
–  Replication and distribution
–  Flexibility in data structure
–  New tecniques for indexing and main memory management

•  Giving something away
–  A very simple application interface (much less powerful than

SQL)
–  Less rigorous transaction management

•  Let us see a few aspects

21/10/2015 Paolo Atzeni 16

•  New systems with
–  Scalability of simple operations over many nodes
–  Replication and distribution
–  Flexibility in data structure
–  New techniques for indexing and main memory management

•  Giving something away
–  A very simple application interface (much less powerful than

SQL)
–  Less rigorous transaction management

21/10/2015 Paolo Atzeni 17

21/10/2015 Paolo Atzeni 18

Flexibility in data structure

•  Semistructured data, a concept studied in the Nineties, in the
first Web era

P. Buneman, tutorial, PODS 1997
http://db.cis.upenn.edu/DL/97/Tutorial-Peter/slides.ps.gz

21/10/2015 Paolo Atzeni 19

Semistructured data, an example

P. Buneman, tutorial, PODS 1997

Workshop on Semistructured Data
at Sigmod 1997

21/10/2015 Paolo Atzeni 20

21/10/2015 Paolo Atzeni 21

Workshop on Semistructured Data
at Sigmod 1997 - 2

21/10/2015 Paolo Atzeni 22

Workshop on Semistructured Data
at Sigmod 1997 - 3

•  New systems with
–  Scalability of simple operations over many nodes
–  Replication and distribution
–  Flexibility in data structure
–  New techniques for indexing and main memory management

•  Giving something away
–  A very simple application interface (much less powerful than

SQL)
–  Less rigorous transaction management

21/10/2015 Paolo Atzeni 23

Scalability is easier if operations are local

•  Scalability of reads can be obtained with replication
•  Scalability of writes is usually obtained with sharding (and

paying attention to replication)

21/10/2015 Paolo Atzeni 24

"NoSQL" systems

•  Work well for applications with operations that are simple and local
•  Categories

–  Extensible record stores
•  BigTable, HBase

–  Key-value stores
•  Amazon Dynamo, Redis

–  Document stores
•  MongoDB, CouchDB

–  Graph DB
•  Neo4J

•  There also SQL systems for operations that are simple and local
(sometimes referred to as NewSQL)
–  MySQL Cluster, VoltDB, Clustrix, ScaleDB

21/10/2015 Paolo Atzeni 25

NoSQL systems are different from one another

•  Many data model families
–  Key-value store
–  Column-based store
–  Document store
–  Graph store

•  Many query models
–  CRUD operations
–  Map/Reduce queries
–  Custom query languages
–  Traversals

•  Many architectural choices
–  Replicas (DHT?) vs sharding
–  In-RAM vs traditional storage
–  AP vs CP vs CA
–  Strong vs eventual consistency
–  …

21/10/2015 Paolo Atzeni 26

Heterogeneity is a problem

•  What if:
–  I want to use many data stores at the same time
–  I want to migrate my data
–  I want to decouple my application from a specific

technology
•  Reverse the canonical problem:

–  One size (DBMS) does not fit all (applications)…
– …but one size (your application) should fit all (the

DBMSs)	

21/10/2015 Paolo Atzeni 27

A problem we know

•  In the same way as with traditional databases, we have
heterogeneity
–  even more than we were used to (even more than with XML)

•  Can modeling and abstraction help?
•  We have experience in the area

Paolo Atzeni 28 21/10/2015

MIDST
(Model Independent Schema and Data Translation)

(P. Atzeni et al. VLDB Journal 2008)

•  Schema and data translation

–  initially with an off-line approach
–  later also with a run-time one

•  Model-generic:
–  works for many models, in an extensible way
–  We have experimented with

•  Relational
•  OR, many variants
•  XSD
•  UML and ER (in many variants and extensions)

•  Based on a lattice of models, with a most general one, the
"supermodel"

Paolo Atzeni 29 21/10/2015

Paolo Atzeni 30

A lattice of models

OR
w/ PK, gen, ref, FK

OR
w/ PK, gen, ref

OR
w/ PK, gen, FK

OR
w/ PK, ref, FK

OR
w/ gen, ref

OR
w/ PK, FK

OR
w/ PK, ref

OR
w/ ref

Relational

Supermodel

21/10/2015

Issues in the NoSQL world

•  Settings are not that much similar to those for traditional
databases
–  Interfaces

•  are usually much simpler
•  have different "expressive power"

–  The structure of data is represented only to a certain extent
(there is no notion of schema, and structure is usually very
flexible)

–  Similarly, there is no notion of query language, nor a general
pattern for queries

Paolo Atzeni 31 21/10/2015

A supermodel based approach?

•  In traditional settings, our idea was to have the supermodel as
the most general model, at the top of a lattice

•  Here, simplicity is a goal, even if objects could have some
structure

•  Also, while in databases data are "exposed" in full (and so there
are powerful query languages that can exploit the structure),
here operations are more focussed

•  Therefore, while in our previous approach we used as a "pivot"
a very rich model, the supermodel, here a much simpler one
would be needed

Paolo Atzeni 32 21/10/2015

A contribution: SOS – Save Our Systems

•  Goal: seamless access to different NoSQL data stores.
–  Define access
–  Define seamless

•  Requirements:
–  Lightweight: small footprint on performances
–  Coherent: with main NoSQL themes and features

•  Hint: do not reimplement SQL
–  Scalable: easily extendable to different technologies

and DBMSes

21/10/2015 Paolo Atzeni 33

A possible architecture

Paolo Atzeni 34 21/10/2015

A possible architecture

Paolo Atzeni 35 21/10/2015

A simple pivot layer

•  A common interface, with a simple set of methods involving
single objects or (for retrieval) sets thereof
–  put
–  get
–  delete

•  Motivation
–  the general, common goal of NoSQL systems is to support

simple operations

•  First implementation in Java

Paolo Atzeni 36 21/10/2015

SOS: Save Our Systems

Paolo Atzeni 37 21/10/2015

SOS, concretely

Paolo Atzeni 38 21/10/2015

Issues

•  Do objects have a structure? Should we handle it?
•  How much sophisticated is the retrieval (get) operation?

Paolo Atzeni 39 21/10/2015

Object structure

•  In general, to support a very basic interface, we could just treat
objects as blobs, serializing them

•  However, objects often have a complex structure, which can be
modeled in tree form, with sets and structures, possibly nested,
as well as simple attributes

•  Our interface gets the native objects and the implementation
serializes them into JSON

Paolo Atzeni 40 21/10/2015

Implementation of the structure

Paolo Atzeni 41 21/10/2015

The get operation

•  Various forms in mind
1.   Object get (String collection, String ID)
2.   Object get (String collection, Path p)
3.   Set<Object> get (Query q)

•  Currently, the first two implemented
1.  Straightforward
2.  Currently retrieval of simple fields, in the future

reconstruction of objects
3.  Many interesting challenges, related to query processing

and performances

Paolo Atzeni 42 21/10/2015

In summary, at the interface level

•  The notion of a model has been useful, to some extent

21/10/2015 Paolo Atzeni 43

Another perspective

•  Models are also useful for defining abstractions at lower levels,
so to handle performance issues, at a level that is a bit higher
than the actual implementation one
–  so that arguments hold (at tleast to a certian degree) for

different systems

21/10/2015 Paolo Atzeni 44

Data organization in NoSQL systems

•  "Simple complex" objects
–  Complex because they often have a nested stucture, and

involve contraints
–  Simple as they are handled as a whole

•  Scalability works well because there are many small objects and
operations do not involve many of them (no joins, no complex
distributed transactrions)

•  So an interesting goal could be to be able to find the "optimal"
degree of "smallness", so that the objects are large enough to
be coherent and small enaough to allow for parallelism and
scalability

21/10/2015 Paolo Atzeni 45

"Tricks" in NoSQL applications

•  Developers often encode structure descritpion in keys, with
practices that common but not well documented ..

•  It would be worth to support their management, hiding the dirty
aspects …

21/10/2015 Paolo Atzeni 46

Encoding structure in keys, an example

21/10/2015 Paolo Atzeni 47

key value
/Player/mary/-/username mary

/Player/mary/-/firstName Mary

/Player/mary/-/lastName Wilson

/Player/mary/-/games[0] { “game” : “Game:2345”, “opponent” : “Player:rick” }

/Player/mary/-/games[1] { “game” : “Game:2611”, “opponent” : “Player:ann” }

… …

/Games/2345/-/id 2345

/Games/2345/-/firstPlayer Player:mary

/Games/2345/-/secondPlayer Player:rick

/Games/2345/-/rounds[0] { … }

/Games/2345/-/rounds[1] { … }

… …

•  A fictious online, web 2.0 game which should manage various
application objects, including players, games, rounds, and
moves

An example

mary	 :	 Player

username	 =	 "mary"
firstName	 =	 "Mary"
lastName	 =	 "Wilson"

rick	 :	 Player

username	 =	 "rick"
firstName	 =	 "Ricky"
lastName	 =	 "Doe"

score	 =	 42

2345	 :	 Game

id	 =	 2345

firstPlayer secondPlayer

:	 GameInfo

games[0]

gameopponent
:	 GameInfo

games[0]

game opponent

:	 Round :	 Round

rounds[0] rounds[1]

:	 Move :	 Move

moves[0] moves[1]

:	 Move

moves[0]

:	 GameInfo

games[2]

:	 GameInfo

games[1]

:	 GameInfo

games[1]...

...

...

...

...

...

21/10/2015 Paolo Atzeni 48

•  We need to manage various application objects, including
players, games, rounds, and moves
–  for example that the target database is an extensible record

store
–  what records (and tables) should we use?

•  a distinct record for each different application object?
•  or should we use each record to represent a group of

related objects? what is the grouping criterion?
–  what columns should we use?

•  a distinct column for each object field?
•  or should we use each column to represent a group of

related fields? what is the grouping criterion?

Implementing the game

21/10/2015 Paolo Atzeni 49

•  In NoSQL database design
–  decisions on the organization of data are required, in any

case
–  these decisions are significant – as the data representation

affects major quality requirements – such as scalability,
performance, and consistency

–  a randomly chosen data representation may not satisfy the
needed qualities

–  how should we make design decisions to indeed support the
qualities of next-generation web applications?

NoSQL database design

21/10/2015 Paolo Atzeni 50

•  State-of-the-art in NoSQL database design
–  a lot of best practices and guidelines

•  but usually related to a specific datastore or class of
datastores

–  neither a systematic methodology nor a high-level data
model

•  as in the case of relational database design

State of the art

21/10/2015 Paolo Atzeni 51

•  We proposed the NoAM approach to NoSQL database
design
–  tailored to the requirements of next-generation web

applications
–  based on the NoAM abstract data model for NoSQL

databases
–  a high level/system independent approach – the initial

design activities are independent of any specific target
systems

•  a NoAM abstract database is first used to represent the
application data

•  the intermediate representation is then implemented in a
target NoSQL datastore, taking into account its specific
features

The NoAM approach to NoSQL database design

21/10/2015 Paolo Atzeni 52

•  The NoAM approach to NoSQL database design is based on
the following main phases
–  aggregate design – to identify the various classes of

aggregate objects needed in the application
•  this activity is driven by use cases (functional

requirements) and scalability and consistency needs
–  aggregate partitioning – aggregates are partitioned into

smaller data elements
•  driven by use cases and performance requirements

–  high-level NoSQL database design – aggregate are mapped
to the NoAM intermediate data model

–  implementation – to map the intermediate representation to
the specific modeling elements of the target datastore

Overview of NoAM

21/10/2015 Paolo Atzeni 53

•  We start by considering application data objects…

Application data

mary	 :	 Player

username	 =	 "mary"
firstName	 =	 "Mary"
lastName	 =	 "Wilson"

rick	 :	 Player

username	 =	 "rick"
firstName	 =	 "Ricky"
lastName	 =	 "Doe"

score	 =	 42

2345	 :	 Game

id	 =	 2345

firstPlayer secondPlayer

:	 GameInfo

games[0]

gameopponent
:	 GameInfo

games[0]

game opponent

:	 Round :	 Round

rounds[0] rounds[1]

:	 Move :	 Move

moves[0] moves[1]

:	 Move

moves[0]

:	 GameInfo

games[2]

:	 GameInfo

games[1]

:	 GameInfo

games[1]...

...

...

...

...

...

21/10/2015 Paolo Atzeni 54

•  … we group them in aggregates (decisions needed!) …

Aggregates

mary	 :	 Player

username	 =	 "mary"
firstName	 =	 "Mary"
lastName	 =	 "Wilson"

rick	 :	 Player

username	 =	 "rick"
firstName	 =	 "Ricky"
lastName	 =	 "Doe"

score	 =	 42

2345	 :	 Game

id	 =	 2345

firstPlayer secondPlayer

:	 GameInfo

games[0]

gameopponent
:	 GameInfo

games[0]

game opponent

:	 Round :	 Round

rounds[0] rounds[1]

:	 Move :	 Move

moves[0] moves[1]

:	 Move

moves[0]

:	 GameInfo

games[2]

:	 GameInfo

games[1]

:	 GameInfo

games[1]...

...

...

...

...

...

21/10/2015 Paolo Atzeni 55

•  … we consider aggregates as complex-value objects…

Paolo Atzeni 56

Aggregates as complex-value objects

Player:mary : 〈
 username : "mary",
 firstName : "Mary",
 lastName : "Wilson",
 games : {
 〈 game : Game:2345, opponent : Player:rick 〉,
 〈 game : Game:2611, opponent : Player:ann 〉
 }

 〉

Player:rick : 〈
 username : "rick",
 firstName : "Ricky",
 lastName : "Doe",
 score : 42,
 games : {
 〈 game : Game:2345, opponent : Player:mary 〉,
 〈 game : Game:7425, opponent : Player:ann 〉,
 〈 game : Game:1241, opponent : Player:johnny 〉
 }

 〉 Game:2345 : 〈
 id : "2345",
 firstPlayer : Player:mary,
 secondPlayer : Player:rick,
 rounds : {
 〈 moves : … , comments : … 〉,
 〈 moves : … , actions : … , spell : … 〉
 }

 〉
21/10/2015

•  … we partition these complex values (decisions needed!) …

57

Aggregate partitioning

Player:mary : 〈
 username : "mary",
 firstName : "Mary",
 lastName : "Wilson",
 games : {
 〈 game : Game:2345, opponent : Player:rick 〉,
 〈 game : Game:2611, opponent : Player:ann 〉
 }

 〉

Player:rick : 〈
 username : "rick",
 firstName : "Ricky",
 lastName : "Doe",
 score : 42,
 games : {
 〈 game : Game:2345, opponent : Player:mary 〉,
 〈 game : Game:7425, opponent : Player:ann 〉,
 〈 game : Game:1241, opponent : Player:johnny 〉
 }

 〉

21/10/2015 Paolo Atzeni 57

Game:2345 : 〈
 id : "2345",
 firstPlayer : Player:mary,
 secondPlayer : Player:rick,
 rounds : {
 〈 moves : … , comments : … 〉,
 〈 moves : … , actions : … , spell : … 〉
 }

 〉

•  … and represent them into an abstract data model for NoSQL
databases (consequence of decisions) …

58

Data representation in NoAM

username “mary”

firstName “Mary”

lastName “Wilson”

games[0] 〈 game : Game:2345, opponent : Player:rick 〉

games[1] 〈 game : Game:2611, opponent : Player:ann 〉

mary username “rick”

firstName “Ricky”

lastName “Doe”

score 42

games[0] 〈 game : Game:2345, opponent : Player:mary 〉

games[1] 〈 game : Game:7425, opponent : Player:ann 〉

games[2] 〈 game : Game:1241, opponent : Player:johnny 〉

rick

Player

Game

21/10/2015 Paolo Atzeni 58

id 2345

firstPlayer Player:mary

secondPlayer Player:rick

rounds[0] 〈 moves : … , comments : … 〉

rounds[1] 〈 moves : … , actions : … , spell : … 〉

2345

•  … and finally we map the intermediate representation to the
data structures of the target datastore (the approach specifies
how)

Implementation

username firstName lastName score games[0] games[1] games[2] …
mary Mary Wilson {…} {…}

rick Ricky Doe 42 {…} {…} {…}

table Player

id firstPlayer secondPlayer rounds[0] rounds[1] rounds[2] …
2345 Player:mary Player:rick {…} {…}

table Game

21/10/2015 Paolo Atzeni 59

•  … and finally we map the intermediate representation to the
data structures of the target datastore (the approach specifies
how)

Paolo Atzeni 60

Implementation

key value
/Player/mary/-/username mary

/Player/mary/-/firstName Mary

/Player/mary/-/lastName Wilson

/Player/mary/-/games[0] { “game” : “Game:2345”, “opponent” : “Player:rick” }

/Player/mary/-/games[1] { “game” : “Game:2611”, “opponent” : “Player:ann” }

… …

/Games/2345/-/id 2345

/Games/2345/-/firstPlayer Player:mary

/Games/2345/-/secondPlayer Player:rick

/Games/2345/-/rounds[0] { … }

/Games/2345/-/rounds[1] { … }

… …

•  In our approach, we consider application data arranged in
aggregates
–  the notion of aggregate comes from Domain-Driven Design

(DDD) – a popular object-oriented design methodology –
and from principles in the design of scalable applications

–  aggregate design affects scalability and the scope of atomic
operations – and therefore, the ability to support relevant
integrity constraints

- Aggregates and aggregate design

21/10/2015 Paolo Atzeni 61

•  Entry per Aggregate Object (EAO)
–  an aggregate object is represented by a single entry
–  the entry value is the whole complex value – the entry key is

empty

Entry per Aggregate Object (EAO)

ε

〈
 username : "mary",
 firstName : "Mary",
 lastName : "Wilson",
 games : {
 〈 game : Game:2345, opponent : Player:rick 〉,
 〈 game : Game:2611, opponent : Player:ann 〉
 }

 〉

mary

21/10/2015 Paolo Atzeni 62

•  Entry per Top-level Field (ETF)
–  an aggregate object is represented by multiple entries – a

distinct entry for each top-level field of the complex value
–  the entry value is the field value – the entry key is the field

name

Entry per Top-level Field (ETF)

username “mary”

firstName “Mary”

lastName “Wilson”

games

{
 〈 game : Game:2345, opponent : Player:rick 〉,
 〈 game : Game:2611, opponent : Player:ann 〉

}

mary

21/10/2015 Paolo Atzeni 63

•  Entry per Atomic Value (EAV)
–  an aggregate object is represented by multiple entries – a

distinct entry for each atomic value in the complex value
–  the entry value is the atomic value – the entry key is the

“access path” to the atomic value

Entry per Atomic Value (EAV)

username “mary”

firstName “Mary”

lastName “Wilson”

games[0].game Game:2345

games[0].opponent Player:rick

games[1].game Game:2611

games[1].opponent Player:ann

mary

21/10/2015 Paolo Atzeni 64

•  The basic data representation strategies can be suited in some
cases – but we often need to partition aggregates in custom
ways
–  aggregate partitioning can be driven by data access

operations – since it affects the performance of database
operations

–  each element of a partition (i.e., an entry) can represent
either a scalar value or a complex value – the usage of
“entries” with a complex value is a common practice in
NoSQL datastores – e.g., Protocol Buffers, Avro schemas

Custom aggregate partitioning

21/10/2015 Paolo Atzeni 65

•  Guidelines for aggregate partitioning – adapted from Conceptual
Database Design (Batini, Ceri, Navathe, 1992)
–  if an aggregate is small in size, or all or most of its data are

accessed or modified together – then it should be
represented by a single entry

–  if an aggregate is large in size, and there are operations that
frequently access or modify only specific portions of the
aggregate – then it should be represented by multiple entries

–  if two or more data elements are frequently accessed or
modified together – then they should belong to the same
entry

–  if two or more data elements are usually accessed or
modified separately – then they should belong to distinct
entries

Guidelines for aggregate partitioning

21/10/2015 Paolo Atzeni 66

Conclusions

•  We argued tha models can be useful in general in area that
does not consider them much

•  We illustrated two experiences:
–  an interface to overcome and handle heterogeneity
–  a design methodology that considers performances

21/10/2015 Paolo Atzeni 67

Thank you!

