Tecniche Algoritmiche per Grafi e Reti

Algoritmi parametrizzati

Patrizio Angelini

Dipartimento di Informatica e Automazione
Università degli Studi Roma Tre
Problem: I want to travel among a set of cities driving the fewest possible number of KMs.

- IT’S DIFFICULT!!

Problem: I want to put a set of objects into some bags, knowing that each bag can not afford more than 10 KGs and trying to use as few bags as possible.

- IT’S DIFFICULT!!
How to deal with NP-Hard problems?

- **Exact Algorithms**
 - Esatti ma lenti. Solo istanze piccole

- **Approximation Algorithms**
 - Veloci ma non esatti, errore limitato

- **Fixed-Parameter Algorithms**
 - Se un certo parametro è costante, problema polinomiale

- **Randomized Algorithms**
 - Non-determinismo
 - Probabilmente esatti; veloci e probabilmente non molto sbagliati; oppure esatti e probabilmente non troppo lenti
Fixed-Parameter Algorithms
Problem (optimization): Given a non-planar graph G, what is the minimum number of vertices to delete in order to make G planar?

NP-hard 😞

[Lewis-Yannakakis]
Problem (decision): Given a non-planar graph G and an integer k, is it possible to make G planar by deleting k vertices?

Polynomial 😊

- For every set of k vertices, remove such vertices from G and test the planarity of the resulting graph.
 - There are $O(n^k)$ such sets.
 - Testing planarity requires $O(n)$ time.
 - $T(n,k)=O(n^k)\ O(n) = O(n^{k+1})$
Where is the trick?

Polynomial 😊
Where is the trick?

In the decision version, \(k \) is a constant parameter that is part of the input.

\[O(n^{k+1}) \] is polynomial... 😊

But the algorithm is still very slow 😞
Fixed-Parameter Tractability

A problem is *Fixed-Parameter Tractable* if it can be solved in

$$O(f(k) \ n^{O(1)})$$

time, where

- k is a parameter of the problem,
- $f()$ is an arbitrary function, and
- $n^{O(1)}$ is a polynomial not depending on k.
Vertex Cover

- **Theorem [Melhorn]:** There exists a $O(2^k n)$-time algorithm for Vertex Cover.
- For each edge (u,v), at least one out of u and v belongs to any solution S.

Add u to S and solve instance $(G-\{u\}, k-1)$.
Vertex Cover

- **Theorem [Melhorn]:** There exists a $O(2^k n)$-time algorithm for Vertex Cover

- For each edge (u,v), at least one out of u and v belongs to any solution S.

Add v to S and solve instance $(G-\{v\}, k-1)$
Vertex Cover – Time Complexity

- \(T(n, 0) = O(n) \)
- \(T(n, k) = 2 \ T(n-1, k-1) + O(n) \leq 2 \ T(n, k-1) + O(n) \leq 2 \ (2 \ T(n, k-2) + O(n)) + O(n) \leq 2 \ (2 \ (2 \ T(n, k-3) + O(n)) + O(n)) + O(n) \leq 2 \ (2 \ (2 \ (...) (2 \ T(n, 0) + O(n)) + ... + O(n)) + O(n)) + O(n) \leq 2^k \ O(n) + (2^{k-1} + 2^{k-2} + 2^{k-3} + ... + 1) \ O(n) = 2^k \ O(n) + (2^k - 1) \ O(n) = O(2^k \ n) \)
Reduction Rules

- **Rule**: (a polynomial-time algorithm) that transforms an instance \((I,k)\) into an **equivalent and simpler** instance \((I’,k’)\)

- **Equivalent**:
 - \((I,k)\) is a YES instance if and only if \((I’,k’)\) is a YES instance

- **Simpler**:
 - \(|I'| < |I|\)
 - \(I'\) has fewer occurrences of a particular substructure
 - \(k' < k\)
If G has a vertex of degree 0, then remove it.
If G has a vertex u of degree 1,
then add its adjacent vertex v to the solution and remove u from G
Reduction Rules – Vertex Cover

- If neither of the two rules can be applied, then every vertex has degree at least 2

- Same algorithm as before (Melhorn) but:
 - add \(u \) to \(S \) and solve \((G-\{u\}, k-1) \)
 - add the neighbors \(N(u) \) of \(u \) to \(S \) and solve \((G-N(u), k-|N(u)|) \)
RR – VC – Time Complexity

• Since $|N(u)| \geq 2$,
 • $T(n,k) \leq T(n,k-1)+ T(n,k-2)+O(n^2)$.

• **Fibonacci series**: every number is the sum of the previous two: $x_k = x_{k-1} + x_{k-2} + c$.

• The k-th number of the Fibonacci series tends to the **golden ratio** to the power of k.

• $T(n,k)=\Phi^k O(n^2)=((1+\sqrt{5})/2)^k O(n^2) = O(1.6181^k n^2)$.
Kernelization

- Sometimes, the reduction rules work till the size of the problem is reduced really a lot.

- After the reduction rules have been applied, the problem has size $g(k)$, where $g()$ is a function only depending on k.

- Then, the problem can be solved by using an exact algorithm, even brute-force, on the reduced instance.
FPT – Complexity classes

- **W[1]**: no FPT-algorithm possible
 - Graph Coloring

- FPT-reduction: the reduction has to be performed with an FPT-algorithm

- No easy correspondence between these parameterized complexity classes and NP- or PSPACE-classes