A Distributed Swarm Aggregation Algorithm for Bar Shaped Multi-Robot Systems

In this work we consider a swarm of agents, which are shaped as bars with a certain orientation in the state space. Members of the swarm have to reach an aggregate state, while guaranteeing the collision avoidance and possibly achieving an angular consensus.

Adaptive Potential-Based Control Design for Multi-Agent Networks

In this work we address the problem of dynamically tuning gains for multi-agent networks under potential- based control design. We propose a distributed and adaptive gain controller that preserves a designed pairwise interaction strength, independent of the network size.

Firmware-Embedded Control Loop and Extended Kalman Filter for Crazyflie 2.0

In this work we consider the problem of introducing a low-level control loop and an Extended Kalman Filter (EKF) into the firmware of a Crazyflie 2.0 nano quadcopter . External position (x,y,z) measurements
are provided for the EKF by our OptiTrack Motion Capture System.

A Navigation Architecture for Ackermann Vehicles in Precision Farming

In this work we propose a full navigation stack purposely designed for the autonomous navigation of Ackermann steering vehicles in precision farming settings. The proposed stack is composed of a local planner and a pose regulation controller, both implemented in ROS.

A Hierarchical and Compact SLAM Architecture for Autonomous Vehicles in Large-Scale Orchard Farming

In this work we propose a compact and hierarchical Simultaneous Localization And Mapping system purposely designed for large-scale hazelnut orchard farming. The proposed system is composed of two layers: (i) an Extended Kalman Filter (EKF) that performs a SLAM and (ii) a Kalman Filter (KF) that estimates the planting pattern of the field.

MP-STSP: A Multi-Platform Steiner Travelling Salesman Problem Formulation for Precision Farming in Large-Scale Orchards

In this work we propose a global planning strategy to optimally move a team of robotic platforms within the orchard especially when operating in large-scale scenarios in order to perform precision farming activities on individual trees, such as targeted spraying or data collectiong for pest and disease monitoring.

Multi-Robot Field of View Control with Adaptive Decentralization

In this work, we propose a general coordinated motion framework for multi-robot systems with triangular FOVs capable of guaranteeing stability under asymmetric (directed) interactions. By proving that asymmetry in multi-robot interactions can lead to degenerate configurations for which a fully decentralized controller may be insufficient to achieve coordination, we introduce a switching control mechanism that achieves adaptive decentralization, enabling collaborative behaviors that seek support of a centralized planner for situations that are inherently unstable.