What a fieldbus system needs to offer

- deterministic (since parallel wiring will be replaced)
- flexible
- interoperable (multi-vendor use)
- cost effective (installation, startup, service)
- reliable and safe
- easy to use

standardization
EN 50170 Volume 2

General Purpose Automation
PROFIBUS-FMS
RS 485 / FO
Universal
- Large variety of applications
- Multi-master communication

Factory Automation
PROFIBUS-DP
RS 485 / FO
Fast
- Plug and play
- Efficient and cost effective

Process Automation
PROFIBUS-PA
IEC 1158-2
Application Oriented
- Powering over the bus
- Intrinsic safety
More than 900 members - 23 regional user associations

PROFIBUS International

- America
 - Brazil
 - USA
- Africa
 - South Africa
- Europe
 - Austria
 - Belgium
 - Czech Republic
 - Denmark
 - Finland
 - France
 - Germany
 - Ireland
 - Italy
 - Netherlands
 - Norway
 - Russia
 - Sweden
 - Switzerland
 - United Kingdom
- Asia
 - China
 - Japan
 - Korea
 - Singapore
- Australia
 - Australia
 - New Zealand

Status: Q3/1999
PRODUCT Variety

Drives
- AC Drives
- DC Drives

Decentralized I/O
- Binary I/O
- Analog I/O
- Regulators
- Timer
- Counter
- Ident-Systems

Controllers
- PLC/NC/RC
- VME, PC
- Workstation

Network components
- Repeaters
- Fiber optics
- Cables

Software Drivers
- DOS/Windows/NT/95
- RT-OS/OS9/VRTX
- VxWorks/PSOS+
- OS2, QNX
- UNIX/VMS

Services
- Development Support
- Implementation Support
- Training

Tools
- Configuration
- Bus Monitor
- Engineering

Host Interfaces
- VAX computers
- VME computers

MMI
- Operator Panels
- Text Displays

Valves
- Pneumatic Valves
- Magnetic Valves

Instruments
- Level
- Flow
- Pressure
- Temperature

Gateways
- AS-Interface
- Proprietary networks

Chapter 1
Date 11/04/99, page 4
Chapter 1

Date 11/04/99, page 5

- CNC
- PC/VME
- VME/PC
- PLC
- DCS

Area Controller

Ethernet/TCP/IP

TCP/IP/Ethernet

Factory level
- Bus Cycle Time < 1000 ms

Cell Level
- Bus Cycle Time < 100 ms

Field Level
- Bus Cycle Time < 10 ms

PROFIBUS-FMS RS-485/FO

PROFIBUS-DP RS-485/FO

PROFIBUS-PA IEC 1158-2
The PROFIBUS Protocol is in Accordance with the ISO/OSI Reference Model for Open Systems

- FMS
- DP
- PA

User

Fieldbus Message Specification

Fieldbus Data Link (FDL)

RS-485 / Fiber Optic

IEC Interface

IEC 1158-2

Layer

Physical (1)

Data Link (2)

Application (7)

(3)-(6)

Device Profiles

DP-Profiles

PA-Profiles

DP-Extensions

EN 50 170

PROFIBUS guidelines + profiles

EN 50170 - 2
The PROFIBUS Bus Access Method combines Multi-Master and Master-Slave communications. Passive Stations (Slave Devices) are polled.
Bus Access

⇒ the PROFIBUS Bus Access Protocol (Layer 2) is identical for all three PROFIBUS variations

⇒ this enables transparent communication and easy combinations of FMS/DP/PA Network sections

⇒ Because FMS/DP use the same Physical Media (RS-485/FO), they can be combined on the same cable
Bus Access

⇒ **Hybrid Bus Access Protocol**

- ✓ Token-Passing between Masters
 Master - Slave Protocol between Master and Slaves

⇒ **Master**

- ✓ active stations with the right to control the bus for a limited amount of time (Token - Hold - Time)

⇒ **Slave**

- ✓ Slaves only respond on request of a Master - they have no rights to control the bus
in Multi-Master Networks, the Token Passing procedure must ensure that each master has enough time to fulfill its communication tasks.

- the user therefore configures the overall Target Token Rotation Time (TTR) taking into account the communication tasks of all masters.

- each Master calculates the available amount of time for its communication tasks at token receipt according to the following rule:

\[T_{TH} = T_{TRR} - T_{TTR} \]

\(T_{TH} = \) Token Hold Time
\(T_{TTR} = \) Target Token Rotation Time
\(T_{TRR} = \) Real Token Rotation Time
FMS, DP, PA

- FMS stands for Fieldbus Messaging System
 - peer to peer communication
- DP stands for Decentralized Periphery
 - fast data exchange
- PA stands for Process Automation
 - intrinsically safe environment
DP and FMS are based on same Layer 1 and 2:

- DP and FMS can be operated on the same bus
- Message header and data length are identical
- The bus physics are identical

- One master can service several slaves
- Several masters can participate on the bus
- Baudrates from 9.6 kBd up to 12 MBd are possible
FMS/DP In Common

- Data transmission can be between 1 and 244 bytes
- 126 stations can be connected
- System can consist of several segments
- 32 stations (RS 485 drivers) per segment
- Common components
 - Cabling, connectors, repeater, fibre optic
- Savings in maintenance and spare parts inventory
PA/DP In Common

⇒ DP and PA are based on the same protocol definition - DP/V1 (extended DP)

✓ DP and PA can use the same master systems
✓ Message header and data length are identical
✓ Configuration tools are the same
✓ Data transmission can be between 1 and 244 bytes
PA/DP In Common

PLC or PC with PROFINET

PROFINET-DP, up to 12 Mbit/s

DP-Slave

DP/AS-i link

Actuator/Sensor interface

DP/PA coupler, DP/PA link

24 V

PA - 31.25 kBd

PROFINET-PA
FMS Features

⇒ FMS is optimized for universal, object oriented communication of intelligent master devices at the cell level

⇒ FMS permits a subset of the MMS-Functions (Manufacturing Message Specification, ISO 9506)

⇒ A slave can be assigned to several masters
 ✓ Several masters can write to the same slave

⇒ Communication connections can be temporary or permanent

⇒ Communication is defined in a communication relation list
The FMS application layer (7) consists of the following parts:

- The Fieldbus Message Specification (FMS) and
- the Lower Layer Interface (LLI)

FMS services are a subset of the MMS services (MMS=Manufacturing Message Specification, ISO 9506)

- have been optimized for field bus applications and have been expanded by functions for communication object administration and network management
The PROFIBUS-FMS communication model permits distributed application processes to be unified into a common process by using communication relationships.

The portion of an application process in a field device which can be reached via communication is called a virtual field device (VFD).
FMS Services

- **Context Management** services are for establishing and terminating logical connections.

- **Variable Access** services are used to access variables, records, arrays or variable lists.

- **Domain Management** services are used to transmit large memory areas. The data must be divided into segments by the user.

- **Program Invocation Management** services are used for program control.

- **Event Management** services are used to transmit alarm messages. These messages can also be sent as broadcast or multicast transmissions.

- **VFD Support** services are used for identification and status polling. They can also be sent spontaneously at the request of a device as multicast or broadcast transmissions.

- **OD Management** services are used for read and write access to the object dictionary.

Only the underlined services shall be supported by all PROFINET devices. The selection of further services is specified by profiles.
FMS Services

- **Confirmed services** can only be used for connection-oriented communication relationships. The execution of a service is shown in Figure

- **Unconfirmed services** can also be used on connectionless communication relationships (broadcast and multicast). They can be transmitted with high or low priority.
FMS Features

⇒ FMS access procedure

Slave 1 Slave 2 Slave 3 Slave x
PA Features

⇒ Based on the extended PROFIBUS-DP Protocol and IEC 1158-2 Transmission

✓ Suitable to replace today's 4...20 mA Technology
✓ Only two wires for data and power
✓ Connects Instruments to the control system via a serial bus
✓ Functional improvements plus reliable serial digital transmission
✓ Control, regulation and monitoring via a simple twisted pair cable
✓ A single engineering tool for all devices
PA Features

Typical System Configuration with PROFIBUS-PA

Area Controller (PLC)
PROFIBUS-DP
RS 485 up to 12 MBit/s

Engineering
or
B&B Tool

IEC 1158-2 with 31.25 kBit/s

Segment-coupler/Link

Transmitter

H1

H2

RS 485 up to 12 MBit/s

PROFIBUS-PA
DP Features

- DP communication is permanent and cyclic
- The transmitted data is specified during the configuration (optimized data exchange)
- Only one master can write outputs (safety aspect)
- Data can be read by controlling and Class 2 master
- Acyclic data via DPV1 functions
- Alarm acknowledgment
- Fastest fieldbus system (up to 12 MBaud)
- Up to 244 byte input AND 244 byte output data per station
DP Features

⇒ DP- Access Procedure

Master - Token exchange

Slave 1 Slave 2 Slave 3 Slave x
⇒ Hamming Distance HD = 4

⇒ HD 4 means, that up to 3 transmission failures at a time can be detected (done by the ASICs)
 ✓ By detecting a faulty telegram, it will be resent automatically without affecting other existing stations

⇒ HD 4 is a term used to describe the reliability of the data transmission on the Profibus network.
 ✓ Special Start and End Sentinels
 ✓ Parity Bit for Each Byte
 ✓ Slip Free
 ✓ According to IEC 870-5-1
 ✓ Delimiter Synchronization
PROFIBUS Wiring

PROFIBUS DP/FMS wiring can be done with:

- twisted shielded pair copper cable
- fiber optic components
- infrared components

A detailed installation guideline is available.
PTO order no. 2.112
PROFIBUS Wiring

d ⇒ twisted shielded pair cable

✓ line parameters are defined in EN 50170
✓ standard cable available from Belden and Siemens
✓ standard connectors available

<table>
<thead>
<tr>
<th>Baudrate</th>
<th>Max. Segment length</th>
<th>Max. Expansion</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.6</td>
<td>1000m / 3278feet</td>
<td>10,000m / 32786feet</td>
</tr>
<tr>
<td>19.2</td>
<td>1000m / 3278feet</td>
<td>10,000m / 32786feet</td>
</tr>
<tr>
<td>93.75</td>
<td>1000m / 3278feet</td>
<td>10,000m / 32786feet</td>
</tr>
<tr>
<td>187.5</td>
<td>1000m / 3278feet</td>
<td>10,000m / 32786feet</td>
</tr>
<tr>
<td>500.0</td>
<td>400m / 1311feet</td>
<td>4,000m / 13114feet</td>
</tr>
<tr>
<td>1,500.0</td>
<td>200m / 655feet</td>
<td>2,000m / 6557feet</td>
</tr>
<tr>
<td>3,000.0</td>
<td>100m / 327feet</td>
<td>1,000m / 3270feet</td>
</tr>
<tr>
<td>6,000.0</td>
<td>100m / 327feet</td>
<td>1,000m / 3270feet</td>
</tr>
<tr>
<td>12,000.0</td>
<td>100m / 327feet</td>
<td>1,000m / 3270feet</td>
</tr>
</tbody>
</table>

max. expansion is done with 9 repeaters in a row
PROFIBUS Wiring

⇒ fiber optic components

✓ plastic and glass fiber optic is available
✓ optical plugs and modules are available

✓ noise immune
✓ potential difference independent
✓ longer distances (up to 20 miles)
✓ redundant operating is possible
✓ line, ring and star configuration
PROFIBUS Wiring

⇒ infrared components

✓ wireless linking of devices in close-up ranges
✓ communication with moving devices
✓ communication with changing devices
✓ noise immune
✓ ground independent
Several interfaces enable redundant systems

Fiber optic segments enable redundant wiring

⇒ Redundancy Improves System Reliability
DP Details

⇒ class 1 master -
 ✓ central controller which exchanges data with the connected I/O devices (slaves)
 ✓ determines the baudrate
 ✓ handles the Token
 ✓ several class 1 masters are permitted, typical devices are PLC, PC

⇒ class 2 master -
 ✓ diagnostic and startup tool, typically a configuration tool
 ✓ can control one slave at a time

⇒ slave station -
 ✓ passive station which acknowledges messages or answers per request
master- master, master- slave communication

Class 1 Master

Class 2 Master

Slave

Reading Slave Diagnosis, Upload, Download
Activating Bus Parameter, Download, Activating/Deact. Slaves, Operating Mode
Reading Diagnosis, Parameter Assignment, Configuring Data Exchange
Address Change Reading Configuration, Reading I/O, Controlling of one Slave

a device can consist of multiple functions, e.g.... class1 and class2, class1 and slave
A device can consist of multiple functions, e.g., class1 and class2, class1 and slave, which allows:

- A simple master master communication via the master - slave combination
- Whenever one master has the token the other PLC can be a slave to this master

PLC1 - master and slave

PLC2 - master and slave
Master - Master communication by using a DP-DP gateway

- combination of two mono master systems
- simple data exchange between the two masters up to 244 byte
Interoperability

⇒ Open Configuration permits Plug and Play
Device Description

GSD file

✓ each slave or master class 1 device on PROFIBUS DP needs to have a device description file, the characteristic of each PROFIBUS-DP device is described in the GSD-File

✓ the GSD-file contains all device specific parameters e.g.:
 × Supported Baudrate
 × Supported Message Length
 × Number of input / output data
 × Meaning of diagnostic messages
 × Options for modular devices e.g. which are available

✓ text file (ASCII-format)

✓ each configuration tool relates to the GSD information
Device Description

- GSD-Files are created by the device vendors
- the PROFIBUS Trade Organization provides an GSD-Editor which makes it very easy to create GSD-Files
- the GSD-Editor contains a GSD-Checker which guarantees the conformance of the GSD-Files to the PROFIBUS standard
- a library of GSD-Files is provided at the PROFIBUS web page: http://www.profibus.com
Device Description

<table>
<thead>
<tr>
<th>#Profibus_DP</th>
<th>(M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>;<PRM-Text_Def_List></td>
<td>(O)</td>
</tr>
<tr>
<td>PrmText =</td>
<td>...</td>
</tr>
<tr>
<td>EndPrmText</td>
<td></td>
</tr>
<tr>
<td>;<Ext-User_Prm_Data_Def_List></td>
<td>(O)</td>
</tr>
<tr>
<td>ExtUserPrmData =</td>
<td>...</td>
</tr>
<tr>
<td>EndExtUserPrmData</td>
<td></td>
</tr>
<tr>
<td>;<Unit_Definition_List></td>
<td>(M)</td>
</tr>
<tr>
<td>GSD_Revision=1</td>
<td></td>
</tr>
<tr>
<td>Vendor_Name=</td>
<td>...</td>
</tr>
<tr>
<td>... ...</td>
<td></td>
</tr>
<tr>
<td>;Slave_specific_data</td>
<td>(M)</td>
</tr>
<tr>
<td>Freeze_mode_supported=</td>
<td>...</td>
</tr>
<tr>
<td>... ...</td>
<td></td>
</tr>
<tr>
<td>;User_Prm_data</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>;Unit_diagnostic</td>
<td></td>
</tr>
<tr>
<td>... ...</td>
<td></td>
</tr>
<tr>
<td>;<Module_Definition_List></td>
<td>(M)</td>
</tr>
<tr>
<td>Module =</td>
<td>...</td>
</tr>
<tr>
<td>EndModule</td>
<td></td>
</tr>
</tbody>
</table>

- **Parameter text (O)**
- **ext. user parameter data (O)**
- **mandatory general data (M)**
- **generic slave data (M)**
- **device related slave data (O)**
- **I/O definition (M)**
Why DP extended?

- the requirements of the process industry are included
- selecting and changing parameters of a field device from several DP-Masters, e.g., CPU, PG or HMI Devices
 - provides for higher flexibility in operation
- Interrupts from Field Devices, e.g., for diagnostics, have to be accepted by the DP-Master
 - allows for greater security
- time stamping of events, e.g., for interrupts, accurate history of special events
- additional data formats are necessary for transmitting data, e.g., floating-point-radix
every station that handles the DP-extensions must meet the previous PROFIBUS-DP-Standard-Functions!
Acyclic communication connections between Class 1 Master and Slave via Slave SAP 51

- Read data set (DDLM_Read)
- Write data set (DDLM_Write)
- Acknowledge alarms (DDLM_Alarm_Ack)

Only the master that parameterized and configured the slave can utilize the SAP 51 for these services also

- Alarm can only be acknowledged by the Class 1 Master via SAP 51 (access protection)
Acyclic communication relations between Class 2 Master and Slave via SAP 0...49

- Initiate (MSAC2_Initiate) - SAP 49
- Abort (MSAC2_Abort)
- Read Data Set (MSAC2_Read)
- Write Data Set (MSAC2_Write)
- Data Transport (MSAC2_Data_Transport)
Network Setup

class 1 master

termination

class 2 master

termination
PIC certification

How to certify a device!

- Vendor applies for an ID number from PROFIBUS International (PI) for his device
- Vendor develops the PROFIBUS device and writes a GSD file

Applies for Certification test at any PROFIBUS Test Lab

Test passed?
NO
refused

YES

Vendor receives two test reports and can apply for a certificate via PI

CERTIFICATE
The PROFIBUS User Organization is currently working on the implementation of universal concepts for vertical integration on the basis of Ethernet TCP/IP.
PROFI
BUS

PROFI
et

- Automation object model according to the Microsoft COM/DCOM standard
- Communication: TCP(UDP)/IP and DCOM wire protocol devices
- Object handling in engineering and HMI: Microsoft OLE, ActiveX
- Integration of existing unchanged PROFIBUS bus segments and PROFIBUS based devices