
Integrating Heterogeneous Multidimensional Databases

Luca Cabibbo and Riccardo Torlone
Dipartimento di Informatica e Automazione

Università Roma Tre
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Abstract

In this paper we present a number of techniques that can
be at the basis of a practical integration tool for multidi-
mensional databases. We start by addressing the basic is-
sue of matching heterogeneous dimensions and provide a
number of general properties that a dimension matching
should fulfill. We then propose two different approaches
to the problem of integration that try to enforce matchings
satisfying these properties. The first approach refers to a
scenario of loosely coupled integration, in which we just
need to identify the common information between sources
and perform drill-across queries over the original sources.
The goal of the second approach is the derivation of a ma-
terialized view built by merging the sources, and refers to
a scenario of tightly coupled integration in which queries
are performed against the view. We finally show how these
techniques can be actually used to perform drill-across op-
erations over heterogeneous multidimensional information
sources.

1 Introduction

The problem of integrating heterogeneous multidimen-
sional databases arises in common scenarios in which in-
formation from autonomous (i.e., independently developed
and operated) data marts need to be combined. A common
practice for building a data warehouse is indeed to imple-
ment a series of integrated data marts, each of which pro-
vide a dimensional view of a single business process. These
data marts should be based on conformed (i.e., common) di-
mensions and facts, but very often different departments of
the same company develop their data marts independently,
and it turns out that their integration is a difficult task. The
need for combining autonomous data marts arises in other
common cases. For instance, when different companies
merge or get involved in a federated project or when there is
the need to combine a proprietary data warehouse with data
available elsewhere, for instance, in external (and likely het-

erogeneous) data warehouses.

In an earlier paper [5], we have introduced and inves-
tigated a fundamental notion underlying data mart integra-
tion: dimension compatibility. Intuitively, two dimensions
(belonging to different data marts) are compatible if their
common information is consistent. We have shown that
dimension compatibility gives the ability to correlate, in a
correct way, multiple data marts by means of drill-across
queries [9], based on joining data over common dimen-
sions. Building on this preliminary study, in this paper
we introduce a number of notions and algorithms that can
be used in a practical integration tool for multidimensional
databases, similarly to how Clio [12] supports heteroge-
neous data transformation and integration.

We start from the problem of integrating a pair of au-
tonomous dimensions and identify a number of desirable
properties that a matching between dimensions (that is, a
one-to-one correspondence between their levels) should sat-
isfy: the coherence of the hierarchies on levels, the sound-
ness of the paired levels, according to the members associ-
ated with them, and the consistency of the functions that re-
late members of different levels within the matched dimen-
sions. We propose two different approaches to the problem
of integration that try to enforce matchings satisfying the
above properties. The first approach refers to a scenario
of loosely coupled integration, in which we need to iden-
tify the common information between sources (intuitively,
the intersection), while preserving their autonomy. This ap-
proach supports drill-across queries, to be performed over
the original sources. The goal of the second approach is
rather merging the sources (intuitively, making the union)
and refers to a scenario of tightly coupled integration, in
which we need to build a materialized view that includes
the sources. With this approach, queries are then performed
against the view built from the sources. As a preliminary
tool, we introduce a powerful technique, the chase of di-
mensions, that can be used in both approaches to test for
consistency and combine the content of the dimensions to
integrate.

We believe that the proposed techniques can be applied



in more general contexts in which there is the need to in-
tegrate generic heterogenous data sources and we have at
our disposal taxonomies of concepts describing the sources
(e.g, ontologies).

The concept of compatibility among dimensions in a
data warehouse has been discussed, under the name of “con-
formity”, by Kimball [9] in the context of data warehouse
design. Our notion of compatibility is actually more suit-
able to autonomous multidimensional data integration than
the notion of conformity since we consider an “integration”
perspective rather than a “design” one. The integration of
heterogenous databases has been studied in the literature ex-
tensively (see, e.g., [6, 7, 10, 13, 17]). In this paper, we take
apart the general aspects of the problem and concentrate our
attention on the specific problem of integrating multidimen-
sional data. Differently from the general case, this problem
can be tackled in a more systematic way for two main rea-
sons. First, multidimensional databases are structured in a
rather uniform way, along the widely accepted notions of di-
mension and fact. Second, data quality in data warehouses
is usually higher than in generic databases, since they are
obtained by reconciling several data sources. To our knowl-
edge, the present study is the first systematic approach to
this problem. A somehow related issue is the derivabil-
ity of summary data from heterogeneous data sets in the
context of statistical databases [11, 18]. Some work has
been done on the problem of integrating data marts with
external data, stored in various formats: XML [8, 14] and
object-oriented [15]. This is related to our tightly coupled
approach to integration, where dimensions are “enriched”
with external data. On the other hand, our loosely cou-
pled approach to integration is related to the problem of
drill-acrossing [1]. Finally, the chase of dimensions can be
viewed as exact method of missing value imputation, which
has been studied in statistical data analysis and classifica-
tion, for instance, by use of estimation with the EM algo-
rithm [16]. However, the goal of these studies is different
from ours.

The paper is organized as follows. In Section 2 we re-
call a multidimensional model that will be used throughout
the paper. In Section 3 we present the notion of dimension
matching and provide a basic tool, called d-chase, for the
management of matchings. In Section 4 we illustrate two
techniques for dimension integration and, in Section 5, we
describe how they can be used to integrate data marts. Fi-
nally, in Section 6, we sketch some conclusions.

2 Preliminaries

2.1 A dimensional data model

In this section, we will briefly recall the MD data
model [4], a multidimensional conceptual data model. It

generalizes the notions commonly used in multidimensional
analysis or available in commercial OLAP systems and, for
this reason, is adopted as a basic framework for our study.
MD is based on two main constructs: the dimension and
the data mart.

Definition 2.1 (Dimension) A dimension d is composed
of:

• a scheme S(d), made of: (i) a finite set L =
{l1, . . . , ln} of levels, and (ii) a partial order � on L
(if l1 � l2 we say that l1 rolls up to l2), and

• an instance I(d), made of: (i) a functionm associating
members with levels; and (ii) a family of functions ρ
including a roll up function ρl1→l2 : m(l1) → m(l2)
for each pair of levels l1 � l2.

We assume that L contains a bottom element ⊥ (wrt �)
whose members represent real world entities that we call
basic.1 Members of other levels represent groups of basic
members.

Let {τ1, . . . , τk} be a predefined set of base types, (in-
cluding integers, real numbers, etc.).

Definition 2.2 (Data mart) A data mart f over a set D of
dimensions is composed of:

• a scheme f [A1 : l1, . . . , An : ln] → 〈M1 :
τ1, . . . ,Mm : τm〉,where eachAi is a distinct attribute
name, each li is a level of some dimension in D, each
Mj is a distinct measure name, and each τj is some
base type; and

• an instance, which is a partial function mapping coor-
dinates for f to facts for f , where:

– a coordinate is a tuple over the attributes of f
mapping each attribute name Ai to a member of
li;

– a fact is a tuple over the measures of f mapping
each measure name Mj to a value in the domain
of type τj .

Example 2.1 Figure 1 shows a Sales data mart that repre-
sents daily sales of products in a chain of stores.

It is worth noting that, according to the traditional database
terminology, the MD is a conceptual data model and there-
fore its schemes can be implemented using several logical
data models [3].

1In [5], we called them ground members.
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Figure 1. Sales data mart

2.2 An algebra for dimensions

Let d denote a dimension having scheme (L,�) and in-
stance (m, ρ). The dimension algebra (DA) can be used to
manipulate dimensions and is based on three operators, as
follows.

Definition 2.3 (Selection) Let G be a subset of the basic
members of d. The selection σG(d) of G over d is the di-
mension d′ such that: (i) the scheme of d′ is the same of
d and (ii) the instance of d′ contains: the basic members
in G, the members of d that can be reached from them by
applying roll-up functions in ρ, the restriction of the roll-up
functions of d to the members of d′.

Definition 2.4 (Projection) Let X be a subset of the levels
of d including ⊥d. The projection πX(d) of d over X is the
dimension d′ such that: (i) the scheme of d′ contains X and
the restriction of � to the levels in X , (ii) the instance of d′

contains: the members of d that belong to levels in X and
the roll-up functions ρl1→l2 of d involving levels in X .

Definition 2.5 (Aggregation) Let l be a level in L. The
aggregation ψl(d) of d over l is the dimension d′ such that:
(i) the scheme of d′ contains l, the levels of d to which l
rolls up, and the restriction of � to these levels, and (ii) the
instance of d′ contains: the members of d that belong to
levels in d′ and the roll-up functions ρl1→l2 of d involving
levels in d′.

For a DA expression E and a dimension d, we denote by
E(d) the dimension obtained by applying E to d.

Example 2.2 Let us consider the time dimension t1 of
the data mart in Figure 1 and let D2002 denote the days
that belong to year 2002. The DA expression E =
πday,month,year (σO2002

(t1)) generates a new dimension
with level day, month and year having as basic members
all the days of 2002 (see Figure 2).

Time
Dimension (t1)

day

month

year

week

time span: 2000-2003

Time
Dimension (E(t1))

day

month
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Figure 2. Application of a DA expression

The following is a desirable property of DA expressions.

Definition 2.6 (Lossless expression) A DA expression E
over a dimension d is lossless if for each member o inE(d),
all the members that roll up to o in d belong to E(d).

In [5] we have shown that the satisfaction of this property
prevents inconsistencies between aggregations over d and
aggregations over E(d).

DA expressions involving only projections and aggrega-
tions are always lossless [5]. On the other hand, if a DA
expression involves selections, the lossless property can fail
to hold: it depends on the particular sets of elements chosen
to perform the selections.

3 Matching autonomous dimensions

In what follows, d1 and d2 denote two dimensions, be-
longing to different data marts, having scheme S(di) =
(Li,�i) and instance I(di) = (mi, ρi), respectively.

3.1 Dimension matching and its properties

Let us start with the basic notion of dimension matching.

Definition 3.1 (Dimension Matching) A matching be-
tween two dimensions d1 and d2 is a (one-to-one) injective
partial mapping µ between L1 and L2.

With a little abuse of notation, given a matching µ, we will
denote by µ also its inverse. We also extend µ to sets of
levels in the natural way (that is, µ(L) is the set containing
µ(l) for each level l in L). Also, we will assume that µ is
the identity on the levels on which it is not defined.

A number of desirable properties can be defined over a
matching between dimensions.

Definition 3.2 (Matching Properties) Let µ be a match-
ing between two dimensions d1 and d2. Then:

• Coherence: µ is coherent if, for each pair of levels
l, l′ of d1 on which µ is defined, l �1 l

′ if and only if
µ(l) �2 µ(l′);
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Figure 3. A matching between two dimen-
sions

• Soundness: µ is sound if, for each level l ∈ L1 on
which µ is defined, m1(l) = m2(µ(l));2

• Consistency: µ is consistent if, for each pair of lev-
els l �1 l′ of d1 on which µ is defined, ρl→l′

1 =
ρ

µ(l)→µ(l′)
2 .

A total matching that is coherent, sound and consistent is
called a perfect matching.

Note that coherence means order preservation, sound-
ness means member set preservation, and consistency
means roll-up functions preservation.

Example 3.1 Figure 3 shows an example of matching be-
tween two geographical dimensions that associates store
with shop, city with town, zone with area, and country with
state. The matching is coherent. If the mapped levels have
the same members it is also sound. Consistency follows
from the equivalence of the roll-up functions between lev-
els.

Clearly, a perfect matching is very difficult to achieve in
practice. In many cases however, autonomous dimensions
actually share some information. To identify this common
information, we need the ability to select a portion of a di-
mension. This comment leads to the following definition.

Definition 3.3 (Dimension Compatibility) Two dimen-
sions d1 and d2 are compatible if there exist two lossless
DA expressions E1 and E2 over d1 and d2, respectively,
such that there is a perfect matching between E1(d1) and
E2(d2). In this case we say that d1 and d2 are compatible
using E1 and E2.

The rationale underlying the definition of compatibility
is that: (i) two dimensions may have common information;

2Note that, for simplicity, we follow a conceptual approach, under
which two levels coincides if they are populated by the same real world
entities. In a logical approach this notion would be based on a bijection
between the identifiers representing the entities.

(ii) the intersection can be identified by DA expressions;
and (iii) lossless expressions guarantee the correctness of
OLAP operations over the intersection [5].

Example 3.2 The dimensional matching reported in Fig-
ure 3 can be made perfect by applying the following expres-
sions to d1 and d2:

πstore,city,zone,country(σm1(store)∩m2(shop)(d1)),

πshop,town,area,state(σm1(store)∩m2(shop)(d2)).

provided that the roll-up functions of the two dimensions
are consistent. If the original dimensions had basic mem-
bers in common and the selection over them made the two
expressions lossless, then they would be compatible.

3.2 Chase of dimensions

We now describe a procedure called d-chase (for chase of
dimensions) that applies to members of autonomous dimen-
sions and show that it can be used for integration purposes.

Let V be a set of variables and L = l1, . . . , lk be a set of
levels. A tableau T over L is a set of tuples t mapping each
level li to a member of li or a variable in V .

Now, let µ be a matching between two dimensions d1

and d2.

Definition 3.4 (Matching Tableau (MT)) The matching
tableau over d1, d2 and µ, denoted by Tµ[d1, d2], is a
tableau over L = L1

⋃
µ(L2) having a tuple tm for each

member m of a level l ∈ L such that:

• tm[l] = m,

• tm[l′] = ρl→l′(m), for each level l′ to which l rolls up,

• tm[l′′] = v, where v is a variable not occurring else-
where, for all other levels in L.

Example 3.3 A possible matching tableau for the matching
between dimensions in Figure 3 is the following.

store city zone country district state prov. region
1st NewYork v1 USA v2 NY v3 v4
2nd LosAng. U2 USA Melrose CA v5 v6
1er Paris E1 France Marais v7 v8 v9
1mo Rome E1 Italy v10 v11 RM Lazio
1st NewYork U1 USA v12 v13 v14 v15
1er Paris E1 France v16 v17 75 IledeFr

In this example, the first three tuples represent mem-
bers of d1 and the others members of d2. The first four
columns represent the matched levels and the other columns
represent levels of the two dimensions that have not been
matched. Note that a variable occurring in a tableau may



represents an unknown value (for instance, in the first row,
the zone in which the store 1st is located, an information
not available in the instance of d1) or an inapplicable value
(for instance, in the last row, the district in which the store
1er is located, a level not present in the scheme of d2).

The d-chase (chase of dimensions) is a procedure in-
spired by an analogous procedure used for reasoning about
dependencies in the relational model [2]. This procedure
takes as input a tableau T over a set of levels L and gener-
ates another tableau that, if possible, satisfies a set of roll-
up functions ρ defined over the levels in L. This procedure
modifies values in the tableau, by applying chase steps. A
chase step applies when there are two tuples t1 and t2 in
T such that t1[l] = t2[l] and t1[l′] �= t2[l′] for some roll
up function ρl→l′ ∈ ρ and modifies the l′-values of t1 and
t2 as follows: if one of them is a constant and the other is
a variable then the variable is changed (is promoted) to the
constant, otherwise the values are equated. If a chase step
tries to identify two constants, then we say that the d-chase
encounters a contradiction, and the process stops generating
a special tableau that we denote by T∞ and call the incon-
sistent tableau.

Definition 3.5 (D-chase) The d-chase of a tableau T , de-
noted by DCHASEρ(T ), is a tableau obtained from T and a
set of roll-up functions ρ by applying all valid chase steps
exhaustively to T .

Example 3.4 By applying the d-chase procedure to the
matching tableau of Example 3.3 we do not encounter con-
tradictions and obtain the following tableau.

store city zone country district state prov. region
1st NewYork U1 USA v2 NY v3 v4
2nd LosAng. U2 USA Melrose CA v5 v6
1er Paris E1 France Marais v7 75 IledeFr
1mo Rome E1 Italy v10 v11 RM Lazio

The d-chase promotes, for instance, v1 to U1, and v8
to 75.

Note that in the d-chase procedure, a promotion of a vari-
able always corresponds to the detection of an information
present in the other dimension and consistent with the avail-
able information but not previously known.

An important result about the d-chase, which follows
from general properties of d-chase, is the following.

Lemma 3.1 The d-chase process terminates on any input
with a unique end result.

The following result states that the d-chase provides an
effective way to test for consistency.

Theorem 3.5 A matching µ between two di-
mensions d1 and d2 is consistent if and only if
DCHASEρ1∪µ(ρ2)(Tµ[d1, d1]) �= T∞.

We finally define a special operation over a tableau that
will be used in the following. Let T be a tableau over a set
of levels L and S = (L′,�) be the scheme of a dimension
such that L′ ⊆ L.

Definition 3.6 (Total projection) The total projection of
T over S, denoted by π↓

S(T ), is an instance (m, ρ) of S
defined as follows.

• for each level l ∈ L, m(l) includes all the members
occurring in the l-column of T .

• for each pair of levels l1, l2 in L such that l1 � l2 and
for each tuple t of T such that: (i) both the l1-value
and the l2-value are defined, and (ii) there is no other
tuple t′ in T such that t[l1] = t′[l1] and t[l2] �= t′[l2],
then ρl1→l2(t[l1]) = t[l2] and is undefined otherwise.

Let d be a dimension and µ a matching between d and any
other dimension d′. We can easily show the following.

Lemma 3.2 I(d) ⊆ π↓
S(d)(DCHASEρ∪µ(ρ′)(Tµ[d, d′])).

This result states an interesting property of the chase that
goes beyond the test of consistency. If we apply the d-chase
procedure over a matching tableau that involves a dimen-
sion d and then project the result over the scheme of d,
we obtain the original instance and, possibly, some addi-
tional (and consistent) information that has been identified
in the other dimension. As noted above, this situation oc-
curs when, in a tuple for a member in d, the d-chase pro-
motes a variable to a member of the other dimension.

4 Two approaches to dimension integration

In this section we propose two different approaches to
the problem of the integration of autonomous data marts.

4.1 A loosely coupled approach

In a loosely coupled integration scenario, we need to
identify the common information between various data
sources and perform drill-across queries over the original
sources. Therefore, our goal is just to select data that is
shared between the sources. Thus, given a pair of dimen-
sions d1 and d2 and a matching µ between them, the ap-
proach aims at deriving two expressions that makes µ per-
fect. The approach is based on Algorithm 1, which is re-
ported in Figure 4.

First of all, the algorithm selects the levels L of d1 in-
volved in the matching µ (Step 1). Then, for each minimal



Algorithm 1
Input: two dimensions d1 and d2 and a matching µ;
Output: two expressions E1 and E2 that make µ perfect;
begin
1) L := the levels of d1 involved in µ;
2) for each minimal level lm of L do
3) L := L− {l ∈ L such that lm ��1 l};
4) if there exist l1, l2 ∈ L such that

l1 �1 l2 and µ(l1) ��2 µ(l2)
then output ‘not coherent’ and exit;

5) E1 := πL(ψlm(d1)); E2 := πµ(L)(ψµ(lm)(d2));
6) M := m1(lm)

⋂
m2(µ(lm));

7) T := Tµ[σM (E1(d1)), σM (E2(d2))];
8) T := DCHASEρ1∪µ(ρ2)(T );
9) if T = T∞ then output ’not consistent’ and exit;
10) d1 := π↓

S(d1)
(T ); d2 := π↓

S(d2)
(T );

11) for each non basic member m ∈ m1,2(l) in T do
12) if ∃m′ ∈ m1,2(l

′) such that l′ �1,2 l and
ρl′→l
1,2 (m′) = m and m′ does not occur in T

then T := T − {t | t[l] = m}
13) M := {m | t[lm] = m for some t ∈ T};
14) E1 := σM (E1(d1)); E2 := σM (E2(d2));
15) output E1 and E2;

endfor
end

Figure 4. An algorithm for deriving the com-
mon information between two dimensions.

level lm in L (that is, for which there is no other level l ∈ L
such that l �1 lm), it selects only the levels to which lm
rolls up (Step 3). The rationale is to find the expressions that
detect the intersection of d1 and d2 in the levels above lm. If
there are several minimal levels, the algorithm iterates over
all of them (Step 2) thus possibly generating several pairs
of expressions.

Step 4 consists of testing for coherence of the matching
according to Definition 3.2. Actually, this test can be done
efficiently by taking advantage of the transitivity of �.

In Step 5 two preliminary expressions E1 and E2 are
identified: they aggregate over lm (µ(lm)) and project over
L (µ(L)). Since no selection is involved, by a result in [5],
these expressions are lossless.

The rest of the algorithm aims at finding the selection
of members that, applied to E1 and E2, identifies common
data in the two dimensions. This is done by building a
matching tableau over the members that occur both in lm
and µ(lm) (Steps 6 and 7) and then chasing it (Step 8). Ac-
cording to Theorem 3.5, this corresponds to a test of consis-
tency for the restriction of µ to the levels in L.

As we have noticed at the end of Section 3, when the
d-chase promotes a variable to a member, this means that a
previously unknown value in one dimension has been iden-

Dimension E2(d2)Dimension E1(d1)

store

city

zone

country

shop

town

area

state

Figure 5. The dimensions generated by Algo-
rithm 1 on the matching in Figure 3

tified in the other dimension. To preserve soundness, this
event asks for the addition of this member in the original
dimension: this is implemented by Step 10.

Steps 11 and 12 serves to identify, from the members oc-
curring in the working tableau T , all the members that in-
validate the property of lossless expression (Definition 2.6).
Finally, all the members that still occur in T at level lm are
used to perform the final selection (Steps 13 and 14).

Example 4.1 Let us consider the application of Algorithm
1 to the dimensions and the matching in Figure 3, as-
suming that that the dimensions are populated by the
members of Example 3.3. Since the matching involves
the bottom levels of the two dimensions, no aggregation
is required and the first part of the algorithm generates
the following expressions: πstore,city,region,country(d1) and
πshop,town,area,state(d2). The intersection of the basic
members contains only the stores 1st and 1er and so the
d-chase produces the following tableau:

store city zone country district state prov. region
1st NewYork U1 USA v2 NY v3 v4
1er Paris E1 France Marais v7 75 IledeFr

This tableau contains the member E1 at the zone level to
which a member of d2 rolls up (the store 1mo), but is not
present in the tableau. It follows that in Step 12 the second
row is deleted and we obtain as output of the algorithm the
following final expressions:

σ{1st}(πstore,city,region,country(d1)),

σ{1st}(πshop,town,area,state(d2)).

The schemes of the dimensions we obtain by applying these
expressions to the original dimensions are reported in Fig-
ure 5.

By construction, and according to the results of the pre-
vious section, we can state the following.

Theorem 4.2 The execution of Algorithm 1 over two di-
mensions d1 and d2 and a matching µ between them returns



Algorithm 2
Input: two dimensions d1 and d2 and a matching µ;
Output: a new dimension d that embeds d1 and d2;
begin
1) L := the levels of d1 involved in µ;
2) if there exist l1, l2 ∈ L such that

l1 �1 l2 and µ(l1) ��2 µ(l2)
then output ‘not coherent’ and exit;

3) L := L1

⋃
µ(L2);

4) �:= (�1

⋃
µ(�2))

+;
5) if � has several minimal levels

then
6) d′1 := d1 augmented with a new bottom level ⊥′

1;
7) d′2 := d2 augmented with a new bottom level ⊥′

2;
8) µ′ := µ

⋃{(⊥′
1,⊥′

2)};
9) L := L

⋃⊥′
1;

10) �:= (�′
1

⋃
µ(�′

2))
+;

else d′1 := d1; d
′
2 := d2; µ′ := µ;

11)T := DCHASEρ′
1∪µ(ρ′

2)(Tµ′ [d′1, d
′
2]);

12) if T = T∞ then output ’not consistent’ and exit;
13) d := π↓

(L,�)(T );
14) output the dimension d;
end

Figure 6. An algorithm for merging two dimen-
sions.

two expressionsE1 andE2 if and only if d1 and d2 are com-
patible using E1 and E2.

The most expensive step of the algorithm is the d-chase
that requires time polynomial with respect to the size of the
tableau, which in turn depends on the cardinality of the di-
mensions involved. It should be said however that the size
of dimensions in a data warehouse is much smaller than the
size of the facts. Moreover, the content of a dimension is
usually stable in time. It follows that the algorithm can be
executed off-line and occasionally, when it arises the need
for integration or when changes on dimensions occur.

4.2 A tightly coupled approach

In tightly coupled integration, we want to build a mate-
rialized view combining different data sources and perform
queries over this view. Our goal is the derivation of new di-
mensions obtained by merging the dimensions of the origi-
nal data sources. In this case, given a pair of dimensions d1

and d2 and a matching µ between them, the integration tech-
nique aims at deriving a new dimension obtained by merg-
ing the levels involved in µ and including, but taking apart,
all the other levels. The approach is based on Algorithm 2,
which is reported in Figure 6.

First of all, similarly to Algorithm 1, Algorithm 2 per-

forms a check for coherence of the input matching. If the
test is successful, it then builds a new (preliminary) dimen-
sion scheme S = (L,�) by merging the levels (Step 3)
and the roll-up relations between levels (Step 4) of the in-
put dimensions. For the latter, we need to guarantee that
the relation we obtain is a partial order. Irreflexivity and
asymmetry follow by the coherence of the matching. To en-
force transitivity, the transitive closure is computed over the
union of the two roll-up relations.

Next step takes into account the special case in which the
relation � we obtain has more than one minimal level. In
this case, in Steps 6 and 7, two new auxiliary bottom lev-
els ⊥′

1 and ⊥′
2 are added below the original bottom levels

⊥1 and ⊥2 of d1 and d2, respectively (clearly, this can be
done without actually modifying the original dimensions).
These levels have as members copies of the basic members
of ⊥1 and ⊥2, suitably renamed so that the intersection of
the two sets of copies is empty. Then, two new roll-up func-
tions ρ⊥

′
1→⊥1 and ρ⊥

′
2→⊥2 mapping each copy to the corre-

sponding member are added to the instances of the dimen-
sions. Finally, the map (⊥′

1,⊥′
2) is added to µ (Step 8) and

the scheme S = (L,�) is modified accordingly (Steps 9
and 10). All of this guarantees the uniqueness of the bottom
level for L without generating undesirable inconsistencies.

A matching tableau is then built on the (possibly modi-
fied) dimensions and a d-chase procedure is applied to the
tableau (Step 11). If no contradiction is encountered (which
corresponds to a test for consistency), the total projection of
the resulting tableau over the scheme S generates the output
dimensions (Steps 12 and 13).

Example 4.3 Let us consider again the matching between
dimensions in Figure 3 but assume that the level store does
not map to the level shop. This means that the correspond-
ing concepts are not related. It follows that the union of the
schemes of the two dimensions produces two minimal levels.
Then, the application of Algorithm 2 to this matching intro-
duces two bottom levels below store and shop. The scheme
of the dimension generated by the algorithm is reported in
Figure 7. If the dimensions are populated by the member
of Example 3.3, the output instance contains all the mem-
bers occurring in the chased matching tableau reported in
Example 3.4.

We say that a dimension d embeds another dimension d′

if there exists a DA expression E such that E(d) = d′. By
construction and on the basis of the discussion above, we
can state the following result.

Theorem 4.4 The execution of Algorithm 2 over two di-
mensions d1 and d2 and a matching µ between them returns
a new dimension d embedding both d1 and d2.

Again, the complexity of the algorithm is bounded by the
d-chase procedure that requires polynomial time in the size
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Figure 8. Weather data mart

of the dimensions involved. Hence, we can make for this
algorithm the same considerations done for Algorithm 1.

5 Data mart integration

In this section we discuss, by means of some examples,
how the techniques described in Section 4 can be used in
data warehouse integration.

Drill-across queries have the goal of combining and cor-
relating data from multiple data marts, and are especially
useful to perform value chain analysis [9]. These queries are
based on joining different data marts over common dimen-
sions [9]. Since join operations combine relations on the
basis of common data, the existence of shared information
between data marts is needed in order to obtain meaningful
results.

The loosely coupled approach supports drill-across
queries between data marts, in that it aims at identifying
the intersection between their dimensions. Actually, the
proposed algorithm also checks for the quality of such in-
tersection; in particular, dimension compatibility (e.g., the

day
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time of day

weather station

city

state

store

city

state

day

month

year

week

Figure 9. A matching between time and loca-
tion dimensions

existence of a “perfect” intersection). As discussed in [5],
this is a necessary condition for obtaining meaningful re-
sults when aggregations must be computed over data marts.

Assume, for instance, that we wish to integrate the Sales
data mart reported in Figure 1 with the data mart storing
weather information reported in Figure 8, in order to cor-
relate sales of products with weather conditions. The in-
tegration between these data sources can be based on the
matchings between the time (t1 and t2) and the location di-
mensions (s1 and ws2) as indicated in Figure 9.

The application of Algorithm 1 to this input checks for
compatibility of dimensions and returns the following pairs
of expressions. The first two expressions select the mem-
bers in common in the time dimensions:

πday,month,year (σdayt1∩dayt2
(t1)),

ψday(σdayt1∩dayt2
(t2)).

where dayt1∩dayt2 denotes the days in common that make
the matching between t1 and t2 perfect. The other pair of
expressions select the members in common in the location
dimensions:

ψcity(σcitys1∩cityws2
(s1)).

ψcity(σcitys1∩cityws2(ws2)).

where citys1 ∩ cityws2 denotes the cities in common that
make the matching between s1 and ws2 perfect.

It turns out that we can join the two data marts to ex-
tract daily and city-based data, but hourly or store-based
data can not be computed. Moreover, if we apply the above
expressions to the underlying dimensions before executing
the drill-across operation we prevent inconsistencies in sub-
sequent aggregations over the result of the join. It follows
that drill-across queries can be defined over the virtual view
shown in Figure 10.

The tightly coupled approach aims at combining data
from different dimensions, intuitively, by computing their
union rather than their intersection. This can be useful when
we need to reconcile and merge two data marts that have
been developed independently.

Consider again the example above. If we apply Al-
gorithm 2 over the time and location dimensions and the
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merged dimensions

matchings in Figure 9, we generate two new dimensions
that can be materialized and used for both data marts. We
can then refer to the homogenous scheme reported in Fig-
ure 11 to perform drill-across queries.

Another application of the second approach is when we
wish to extend local dimensions with data from external di-
mensions, but ignoring remote factual data, to extend local
querying capabilities. For instance, to specify further selec-
tions and groupings (as suggested in [14]).

For example, consider again the Sales data mart. It could
be integrated with an external and more sophisticated loca-
tion dimension to select, for instance, sales in cities having
more than 100.000 inhabitants.

6 Conclusion

We have proposed in this paper a number of concepts
and techniques for the integration of heterogeneous multi-
dimensional databases. We have first addressed the prob-
lem from a conceptual point of view, by introducing the de-
sirable properties of coherence, soundness and consistency
that “good” matchings between dimensions should enjoy.

Figure 12. A prototype of the system

We have then presented two practical approaches to the
problem that refer to the different scenarios of loosely and
tightly coupled integration. We have shown that, if possi-
ble, both approaches guarantee the fulfillment of the above
properties. To this end, we have introduced a practical tool,
the chase of dimensions, that can be effectively used in both
approaches to compare the content of the dimensions to in-
tegrate.

To test our approach, we have designed and developed
the first release of an interactive tool for the integration
of multidimensional databases, called DaWaII (for Data
Warehouse IntegratIon), that implements the proposed tech-
niques. Specifically, this tool is able to: (i) access data
marts stored in a variety of systems (DB2, Oracle, SQL
Server, among others); (ii) extract from these systems meta-
data describing cubes and dimensions and translate these
descriptions in MD format; (iii) specify by means of a
graphical interface matchings between autonomous dimen-
sions; (iv) test for coherence, consistency, and soundness
of matchings; (v) generate the intersection between two di-
mensions, according to the loosely integration approach;
and (vi) merge two dimensions, according to the the tightly
integration approach. An hint of the graphical interface pro-
vided by this tool is reported in Figure 12.

We believe that the techniques presented in this paper
can be generalized to much more general contexts in which,
similarly to the scenario of this study, we need to integrate
heterogenous sources and we possess a taxonomy of con-
cepts that describe their content. As a matter of fact, we
note that dimensions have structural and functional simi-
larities with ontologies, which provide descriptions of con-
cepts in a domain and are used to share knowledge. It turns
out that some of the notions and the techniques presented
here can provide a contribution to the problem of integrat-



ing generic information sources using ontologies. This is
subject of current investigation.
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