
1

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

Virtual Memory

the role of the operating system

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

2

virtual memory vs. disk caching
● common objective

– keep in main memory only data and/or programs
that are really useful (frequently accessed)

● different action domain
– virtual memory: processes, pages, segments

– disk caching: files

→

←

ram disk

virtual
memory

rarely used
processes, pages

or segments
swap area

disk caching disk cache
frequently used

parts of files

not on
the book

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

3

resident set

● the resident set (RS) of a process at a given
time is the set of pages that are in main
memory at that time
– pages in RS content chages over time

– size of RS may change over time or not,
depending on the OS policies

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

4

Fetch Policy
● Fetch Policy

– Determines when a page should be
brought into memory

– Demand paging only brings pages
into main memory when a reference is
made to a location on the page

● Many page faults when process first
started

– Prepaging brings in more pages than
needed

● More efficient to bring in pages that reside
contiguously on the disk

● if “prediction” is good, pages are already in
memory when they are needed

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

5

Placement Policy

● Determines where in real memory a
process piece (segment or page) is
to reside

● Important in a segmentation system
– see memory allocation approaches

● Paging: MMU hardware performs
address translation
– placement policy is irrelevant

– in practice hw may impose some
constraint

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

6

Replacement Policy

● Replacement Policy
– Which page is replaced?
– Page removed should be the page

least likely to be referenced in the near
future

– Most policies predict the future
behavior on the basis of the past
behavior

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

7

Replacement Policy

● Frame Locking
– If frame is locked, it may not be

replaced
– Kernel of the operating system
– Control structures
– I/O buffers
– Associate a lock bit with each frame

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

8

pager or swapper

● the part of the kernel that manage the RS of
the processes is called pager or swapper.

● it implements the replacement policy
– page replacement is the most critical problem to

solve for virtual memory efficiency/efficacy

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

9

Basic Replacement
Algorithms/Policies

● Optimal policy
– Selects for replacement that page for

which the time to the next reference is
the longest

– results in the fewest number of page
faults

– no other policy is better than this

– Impossible to implement
● it needs to have perfect knowledge of

future events!!!

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

10

optimal policy example

● page references stream:
2 3 2 1 5 2 4 5 3 2 5 2

● 3 frames are available

1 is no more referenced

2 is referenced after 5 and 3

×
× ×

cannot be avoided
(F) (F)

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

11

Basic Replacement
Algorithms/Policies

● Least Recently Used (LRU)
– Replaces the page that has not been

referenced for the longest time
– By the principle of locality, this should

be the page least likely to be
referenced in the near future

– Each page is tagged with the time of
last reference. This would require a
great deal of overhead.

● timestamp update for each reference in
memory!

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

12

LRU policy example

×
×

×
×

cannot be avoided
(F) (F)

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

13

Basic Replacement
Algorithms/Policies

● First-in, first-out (FIFO)
– Treats page frames allocated to a

process as a circular buffer (queue)
– Pages are removed in round-robin

style
– Simplest replacement policy to

implement
– Page that has been in memory the

longest is replaced
– These pages may be needed again

very soon

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

14

FIFO policy example

×
×

×
×

cannot be avoided
(F) (F)

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

15

Basic Replacement
Algorithms/Policies

● Clock Policy (second chance)
– one additional for each page bit called a use

bit
– set use=1

● when a page is first loaded in memory
● each time a page is referenced

– when it is time to replace a page scan the
frames...

● the first frame encountered with use=0 is
replaced

● while scanning if a frame has use=1, set
use=0

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

16

clock policy example

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

17

clock policy example

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

18

clock policy example

×
×

×
×

×

cannot be avoided
(F) (F)

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

19

comparison of replacement
algorithms

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

20

CLOCK approximates LRU

● for each instance of CLOCK consider 2 sets
– A: recently used pages (pages with use=1)

– B: not recently used pages (pages with use=0)

● each time clock arm is moved a page is
demoted from A to B
– which one is quite arbitrary, depends of the

position of the arm

● a page is promoted from B to A when it is
accessed

not on
the book

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

21

CLOCK with “modified” bit
● we prefer to replace frames that have not

been modified
– since they need not to be written back to disk

● two bits are used (updated by the hardware)
– use bit

– modified bit

● frames may be in four states
– not accessed recently, not modified

– not accessed recently, modified

– accessed recently, not modified

– accessed recently, modified pr
ef

er
en

ce
 in

cr
ea

se
s

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

22

CLOCK with “modified” bit

1 look for frames not accessed recently and
not modified (use=0, mod=0)

2 if unsuccessful, look for frames not accessed
recently and modified (use=0, mod=1)

● ... while setting use=0 as in regular clock.

3 if unsuccessful, go to step 1

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

23

CLOCK with “modified” bit

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

24

aging policy
(da Tannenbaum)

● for each age keeps an age “estimator”
– the less is the value the older is the page

● it periodically sweeps all pages...
– scans use bits and modifis estimator for each page

● example: for page p shift right (that is divide by two) and
insert the value of use bit for p as leftmost bit

– it records the situation of the use bits for the last (e.g. 8) sweeps
● theoretically, more complex extimators may be used

– clear all use bits to record page usage for the next
sweep

● evict pages starting from older ones
– that is, those that have a lower estimator

not on
the book

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

25

aging policy
 version with right shift estimator

00010000

not on
the book use bit for

each page
during at the
sweep istant

sweep sweep sweep sweep

0 5 0 5 0 5 0 5 0 5

oldest pages
at a certain
instant

time

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

26

aging approximates LRU
● ages are quantized in time

– many references between two sweeps are
counted once

– aging policy is much less precise than LRU

● very old references are forgotten
– when an estimator reach zero it remains

unchanged

– impossible to discriminate among pages that
were not referenced for very long time

● LRU always maintains all the information it needs

not on
the book

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

27

Page Buffering
● system always keeps a small amount of free

pages
● pages replaced are added to one of two lists

– Free page list, if page has not been modified

– Modified page list, otherwise

● pages of the free list are physically overwritten
only if the page is really re-assigned

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

28

Page Buffering
● if the page is claimed again it may be given to

the process without any access to secondary
memory

● we have a page fault but with very small
overhead
– no disk reading

– just update data structures in main memory
● page buffer → RS of the process

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

29

Page Buffering

● when a modified page is written out it is
put into the free page list

● modified pages can be written out on
secondary memory in clusters reducing
the number of I/O

● page buffering has been adopted to
“correct” simple policies like FIFO

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

30

resident set management

● resident set size
– how many pages are in memory for each

process?

● replacement scope
– what is the set of pages that are considered for

replacement?

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

31

Resident Set Size (RSS)

● Fixed-allocation
– Gives a process a fixed number of

pages within which to execute
– When a page fault occurs, one of the

pages of that process must be
replaced

● Variable-allocation
– Number of pages allocated to a

process varies over the lifetime of the
process

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

32

Replacement Scope

a process A generated a page fault
– that is, a page of A must be loaded in memory

– it will take the place of another page, which one?

● local policy
– the page to be replaced is chosen among the

pages of A

● global policy
– the page to be replaced is chosen among all the

pages in memory regardless of the process they
belong to.

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

33

Fixed Allocation, Local
Scope

● Decide ahead of time the amount of
allocation to give a process

● If allocation is too small, there will be
 a high page fault rate

● If allocation is too large there will be
too few programs in main memory
– bad usage of main memory

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

34

fixed allocation, global scope

● not possible

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

35

Variable Allocation,
Global Scope

● Easiest to implement
● Adopted by many operating systems
● Operating system keeps list of free frames
● A free frame is added to resident set of a

process when a page fault occurs
● If no free frame, replaces one from

another process

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

36

Variable Allocation,
Local Scope

● When a new process is added, allocate a
number of page frames based on
application type, program request, or
other criteria

● When page fault occurs, select page from
among the resident set of the process
that suffers the fault

● Reevaluate allocation from time to time
– see “working set”

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

37

(memory) virtual time

● consider a sequence of memory references
generated by a process P
r(1), r(2),...

● r(i) is the page that contains the i-th address
referenced by P

● t=1,2,3,... is called (memory) virtual time for
P

it can be approximated by “process” virtual time
– memory references are uniformly distributed in

time

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

38

working set

● defined for a process at a certain instant (in
virtual time) t and with a parameter Δ
(window)
– denoted by W (t, Δ)

● W (t, Δ) for a process P is the set of pages
referenced by P in the virtual time interval
[t – Δ + 1, t]
– the last Δ virtual time instants starting from t

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

39

working set properties

 the larger the window size, the larger the
working set.

upper bound for the size of W

N number of pages in the process image

W t , Δ1⊇W t , Δ

1∣W t , Δ∣min Δ , N 

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

40

working set

Δ

|W (t, Δ)|

N

W
 =

 Δ
● values of |W (t, Δ)| varying Δ for

t fixed and t>>N

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

41

working set: esempio

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

42

working set: andamento tipico nel
tempo

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

43

our goal

● ideally we would like to have always the
working set of each process in memory
(RS=WS, for a fixed Δ)

● WS (theoretical) strategy
– monitor the WS of each process

– update the RS according to the WS
● page faults add pages to WS (and to RS)
● periodically remove pages of the resident set that are

not in the WS. In other words, LRU with variable
resident set size.

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

44

few
page
faults

few
page
faults

few
page
faults

Δ'<<Δ

few
page
faults

more
page
faults

even
more
page
faults

working set strategy: problems

● optimal Δ?
– larger Δ → less page faults and larger |W|

– trade-off between number of page faults and WS
size!

– in any case the optimal value may depend on time

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

45

working set strategy:
implementation problems

● we need to maintain the history of the
reference for Δ
– more and more difficult as Δ increase

● it should be done in real-time
– keep a list of the memory reference in hw?

– count memory reference and mark pages with
the current value of the counter?

– in any case we need hw support

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

46

WS strategy approximation

● consider the frequency of page faults for a
process (PFF)

● if the RS size of the process is larger than the
WS size, PFF is low

● if the RS size of the process is smaller than
the WS size, PFF is high

● we can use PFF to estimate the relationship
between RS size and WS size

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

47

page fault frequency (PFF)

● if PFF is below a
threshold for P,
decrease RSS of P

● the whole system
will benefit

PFF threshold

RSS(P)

PFF(P)

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

48

page fault frequency (PFF)

● if PFF is above a
threshold for P,
increase RSS of P

● P will benefit

PFF threshold

RSS(P)

PFF(P)

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

49

PFF policy implementation

● maintain a counter t of the memory
references (it count virtual time)

● on each page fault update estimation of PFF
● keeping the time t

1
 of the last page fault PFF≈1/(t-t

1
)

● keeping a first order estimator

● decide action on estimated PFF

PFF now=α
1
t−t1

1−αPFF prev

α∈(0,1]

not on
the book

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

50

PFF policy implementation
● if PFF is above the PFF

threshold

– increse the RSS

● if PFF is below the PFF
threshold

– evict at least two pages from the resident set
● one to make space for the new one and one to reduce

the RSS

● in any case load in the page
● to avoid oscillations usually two distinct

thresholds are used: PFF
max

and PFF
min

– PFF
max

>PFF
min

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

51

PFF policy

● it may be used with page buffering
● it performs poorly in transient periods

– RSS grows rapidly while changing from one
locality to another

– big RSS trigger process suspension

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

52

Cleaning Policy

● Demand cleaning
– A page is written out only when it has

been selected for replacement
● Precleaning

– Pages are written out in batches
before selction for replacement

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

53

Cleaning Policy

● Best approach uses page buffering
– Replaced pages are placed in two lists

● Modified and unmodified

– Pages in the modified list are
periodically written out in batches

– Pages in the unmodified list are either
reclaimed if referenced again or lost
when its frame is assigned to another
page

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

54

Load Control

● Desipte good design system may always
trash!

● Determines the number of processes that
will be resident in main memory

● Too few processes, many occasions
when all processes will be blocked and
much time will be spent in swapping

● Too many processes will lead to thrashing

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

55

Multiprogramming

trashing

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

56

Process Suspension

● Lowest priority process
● Faulting process

– This process does not have its working
set in main memory so it will be
blocked anyway

● Last process activated
– This process is least likely to have its

working set resident

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

57

Process Suspension

● Process with smallest resident set
– This process requires the least future

effort to reload
● Largest process

– Obtains the most free frames
● Process with the largest remaining

execution window

