Memory Management

summary

« goals and requirements
» techniques that do not involve virutal memory

memory management goals

« subdividing memory to accommodate multiple
processes

* memory needs to be allocated to ensure a
reasonable supply of ready processes to
consume available processor time

* however the problem is general

— memory allocators are used to reserve and free
contiguous memory blocks
* C (C++): malloc (new) and free (delete)
« java management and garbage collectors
 kernel data structure (beside processes)

memory management

requirements for processes

* relocation

— programmer does not know where the program
will be placed in memory when it is executed

— while the program is executing, it may be
swapped to disk and returned to main memory at
a different location (relocated)

— memory references must be translated in the
code to actual physical memory address

memory management

requirements for processes
* Relocation

Process control
information

Entry point
to program

Branch
instruction
Increas ing
address
values
Reference
to data

memory management
requirements for processes

 protection

— processes should not be able to reference memory
locations in another process without permission

— references must be checked at run time

* impossible to check memory references at compile
time (may directly depend on the input!)

— Memory protection requirement must be satisfied by the
processor (hardware) rather than the operating system
(software)

« Operating system cannot anticipate all of the memory references
a process will perform

memory management

requirements for processes

 sharing
— allow several processes to access the same
portion of memory

— better to allow each process access to the same
copy of the program rather than have their own
separate copy

memory management

requirements for processes

* |ogical organization
— programs are written in modules

— modules can be written and compiled
independently

— different degrees of protection given to modules
(read-only, execute-only)

— share modules among processes

memory management

requirements for processes
* physical organization
— memory available for a program plus its data may
be insufficient
 Overlaying allows various modules to be assigned the
same region of memory
— programmer does not know how much memory
will be available

techniques that do not involves
virtual memory

Fixed Partitioning

« Equal-size partitions

— Any process whose size is less than or equal to
the partition size can be loaded into an available
partition

— If all partitions are full, the operating system can
swap a process out of a partition

— A program may not fit in a partition. The
programmer must design the program with
overlays

11

Fixed Partitioning

* Main memory use is inefficient. Any program,
no matter how small, occupies an entire
partition. This is called internal
fragmentation.

12

partitions size

Operating System
M

{a) Equal-size partitions

Operating System
§M

M

4M

6M

{b) Unequal-size partitions

Placement Algorithm with

Partitions
« Equal-size partitions

— Because all partitions are of equal size, it does
not matter which partition is used

» Unequal-size partitions
— Can assign each process to the smallest partition
it will fit into
— Queue for each partition

— Processes are assigned in such a way as to
minimize wasted memory within a partition

14

Placement Algorithm with
Partitions

Operating Operating
System System

L] —»

(a) One process queue per partition (b} Single queue

15

dynamic partitioning and
compaction

Partitions are of variable length and number

Process is allocated exactly as much memory
as required

Eventually get holes in the memory. This is
called external fragmentation

Must use compaction to shift processes so
they are contiguous and all free memory is in
one block

— Iin the general case compaction may be
unfeasible (C/C++ allocators)

16

(a)

I—EM

r'» S6EM

20

(b}

% 36M

Process 2

[l

XM

14M

22M

external fragmentation

()

20M

14M

15M

17

System

Process 1

Process 3

(&)

2

14M

| EM

4M

Cperating

Process |

Process 4

i

X

mh
fal

| EM

4

Proces 3

(g)

XM

external fragmentation

(h)

14M

il

LA
filvl

156

40

18

Dynamic Partitioning Placement
Algorithm

» Operating system must decide which free
block to allocate to a process

 Best-fit algorithm

— Chooses the block that is closest in size to the
request

— Worst performer overall

 since smallest block is found for process, the smallest
amount of fragmentation is left

— Memory compaction must be done more often

19

Dynamic Partitioning Placement

Algorithm
 First-fit algorithm
— Scans memory form the beginning and chooses
the first available block that is large enough
— Fastest

— May have many process loaded in the front end
of memory that must be searched over when
trying to find a free block

20

Dynamic Partitioning Placement

Algorithm

* Next-fit
— Scans memory from the location of the last
placement

— More often allocate a block of memory at the end
of memory where the largest block is found

— The largest block of memory is broken up into
smaller blocks

— Compaction is required to obtain a large block at
the end of memory

21

examples

BM

120
22M
T 18M
allosc ated

block (14K)
| ;
BMn
» allocation of a &

block of 16 MB

14M
A6

(a) Before

BM

First Fit 1M

| .
6M

Best Fit

2M

80

60
Allccated block

Free hlock

Possible new allocation 14M

MNext Fit

200M

i) After

Buddy System

* entire space available is treated as a single
block of 2Y

» a request of s bytes returns a block of
ceil(log2 s) bytes

— if a request of size s such that 2-'<s <=2 a
block of length 2' is allocated

—a 2' block can be split into two equal buddies of
2" bytes
— for each request a “big” block is found and split

until the smallest block greater than or equal to s
IS generated

23

Buddy System

. it maintains a lists L. (/=1..U) of unallocated

blocks (holes) of size 2
_ splitting: remove a hole from L splitit, and put
the two buddies itinto L

— coalescing: remove two unallocated buddies from
L and putitinto L__

24

1 Mbyte block
Request 100 K
Request 240 K
Request 64 K
Request 256 K
Release B
Release A
Request 75 K
Release C
Release E

Release D

buddy system: example

1M
A=128K| 138K 256 K S12 K
A=128K| 128K B=256K S12 K
A=128K =64 K B=23K S12 K
A=128K =64 K B=256K D=256 K 256 K
A=128 K c=uK|6d K 256 K D=25 K 256 K
128 K [c=dsdK|6d K 256 K D=25 K 256 K
E=128K c=ug64 K 256 K D=256 K 256 K
E=128Kk| 128K 256 K D=256K 256 K
512K D=25 K 256 K
1M

25

Buddy System
procedure get_hole
input: /i (precondition: i<U)

output: a block ¢ of size 2/ (postcondition: L; does
not contain ¢)

if (L is empty)

b= get _hole(i+1);
< split b into two buddies b1 and b2>

<putb andb, intoL >
c= < first hole in L;>
<remove ¢ form L,->

return c

26

buddy system: tree representation

256K %
125K %
" O@

b i v v v
A=128K c=sak|64 K 256 K D=256 K 256 K

relocation

* a process may occupy different partitions, which
means different absolute memory locations

 when program load into memory the absolute
memory locations are determined

— different execution may lead to different locations
« on-the-fly relocation during execution

— swap out and swap in

— compaction of allocated partitions

28

addresses in the program

* Physical
— The absolute address or actual location in main memory
 Logical

— Reference to a location in a “logical” memory independent
of the current assignment of data to memory

— Translation must be made to the physical address by the
hardware (MMU)

 Relative (logical or physical)

— Address expressed as a location relative to some known
point

29

hardware support for relocation

Relative address

Process image in
main memory 30

Registers Used during Execution

« Base register
— Starting address for the process

* Bounds register
— Ending location of the process

* These values are set when the process is
loaded or when the process is swapped in

31

Registers Used during Execution

* The value of the base register is added to a
relative address to produce an absolute
address

* The resulting address is compared with the
value in the bounds register

» |f the address is not within bounds, an
interrupt is generated to the operating system

32

Paging

« Partition memory into small equal fixed-size chunks
and divide each process into the same size chunks

* The chunks of a process are called pages and
chunks of memory are called frames

« Operating system maintains a page table for each

process

— Contains the frame location for each page in the
process

— Memory address consist of a page nhumber and
offset within the page

33

Assignment of Process Pages to Free
Frames

Frame

Main memory Main memory Main memory
number ' = =
0 0 A.0 0 A0
I 1 A.l 1 A.l
2 2 A2 2 A.2
3 3 A3 A A3
4 4 4 BAbs)
5 k 5 N PR R
& 6 &
7 7 T
B B B
9 9 0
10 10 10
11 11 11
12 12 12
13 | 13 13
14 14 14
(a) Fifteen Available Prames (b)) Load Process A (¢) Load Process B

34

Assignment of Process Pages to Free

@ o~ h A b W ko=

b Emh
e Ll b e O

Main memory

A0

A.l

A2

A.d
AR
NI

B.2
C.l

W”‘W

(d) Load Process C

Frames

Main memory

A.D

A.l

A2

A.d

B =1 = R L e b e

C.
C.

77 ”W

(e) Awap out B

@ o~ h A b W ko=

b mh e
e Ll b e O

Main memory

A0

A.l

A2

A2

DL

D.1

.2
£

w/“w

[ll.:-‘l-

() Load Process I

35

Page Tables

0, 0 0| N 0| 7
1 1 1| N 1 o]
2| 2 2| N 21 9
3 3 Process B 31 10
Process A page table Process C
page table page table
0] 4 13
1| § 14
% 6 Free frame
] list
Process D
page table

i bl == 2D

- G0 s N LA L

10
11
12
13
14

Main memory

Al

A.l

A2

A2

DL

D.1

0.2
C.

SIS SIS

0.3

D4

(1) Load Process [
30

Segmentation

All segments of all programs do not have to
be of the same length

here iIs a maximum segment length

Addressing consist of two parts - a segment
number and an offset

Since segments are not equal, segmentation
IS similar to dynamic partitioning

37

User process

paging vs. segmentation

Logical address = Logical address =
Relative address = 1502 Pﬂgﬂ# = 1._, Offset =478 SE‘E]HEH'.# = |, Offsat =752
(0000010111011110] (000001/0111011110] (0001/001011110000]
II.- =
21
= 25 <
5
= o
i' F Y
: = 3
= < Tt i
= o S E 4
E o
22
T =
& g
\ £ = \
==
(a) Partitioning }‘E = (c) Segmentation
= F
e

(b) Paging
(page size = 1K)

logical to physical translation
paging
16-hit logical address

4 >
6-hit page # 10-bit offset
£ » 4

b
0/0]0)0]011|0]1({2(2f{0(1(2/2]2)|0
Y R T =
o{o00101
»1 (000110
2(011001
Process
page table +
4 S = A
0({0|0[1]1|0(O[1]1|1(O(1]1]|1

+#

16-bit physical address
(a) Paging

29

logical to physical translation

segmentation
16-hit logical address
4 -
4-bit segment # 12-bit offset
L b -
0|j0jof1/0j0(1/0j1|1f1)1j0f/0/0]0
'..._,_.—-.\r.a—-—._l-._ — !
Length Base
0(001011101110}0000010000000000
— 1 (0111100111104 0020000000200000 hé)
Process segment table
v
- —s
0/|0(1{0]0j0(1}|1]0|0O[O]1]0O]|O
-

16-bit physical address
(b) Segmentation

