
1

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

si

st
e

m
i o

p
e

ra
tiv

i a
.a

.
2

0
0

5
-2

0
0

6

Memory Management

2

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

si

st
e

m
i o

p
e

ra
tiv

i a
.a

.
2

0
0

5
-2

0
0

6

summary

• goals and requirements

• techniques that do not involve virutal memory

3

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

si

st
e

m
i o

p
e

ra
tiv

i a
.a

.
2

0
0

5
-2

0
0

6

memory management goals
• subdividing memory to accommodate multiple

processes

• memory needs to be allocated to ensure a
reasonable supply of ready processes to
consume available processor time

• however the problem is general
– memory allocators are used to reserve and free

contiguous memory blocks
• C (C++): malloc (new) and free (delete)

• java management and garbage collectors

• kernel data structure (beside processes)

4

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

si

st
e

m
i o

p
e

ra
tiv

i a
.a

.
2

0
0

5
-2

0
0

6
 memory management

requirements for processes
• relocation

– programmer does not know where the program
will be placed in memory when it is executed

– while the program is executing, it may be
swapped to disk and returned to main memory at
a different location (relocated)

– memory references must be translated in the
code to actual physical memory address

5

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

si

st
e

m
i o

p
e

ra
tiv

i a
.a

.
2

0
0

5
-2

0
0

6
 memory management

requirements for processes
• Relocation

6

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

si

st
e

m
i o

p
e

ra
tiv

i a
.a

.
2

0
0

5
-2

0
0

6
 memory management

requirements for processes
• protection

– processes should not be able to reference memory
locations in another process without permission

– references must be checked at run time

• impossible to check memory references at compile
time (may directly depend on the input!)

– Memory protection requirement must be satisfied by the
processor (hardware) rather than the operating system
(software)

• Operating system cannot anticipate all of the memory references
a process will perform

7

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

si

st
e

m
i o

p
e

ra
tiv

i a
.a

.
2

0
0

5
-2

0
0

6
 memory management

requirements for processes
• sharing

– allow several processes to access the same
portion of memory

– better to allow each process access to the same
copy of the program rather than have their own
separate copy

8

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

si

st
e

m
i o

p
e

ra
tiv

i a
.a

.
2

0
0

5
-2

0
0

6
 memory management

requirements for processes
• logical organization

– programs are written in modules

– modules can be written and compiled
independently

– different degrees of protection given to modules
(read-only, execute-only)

– share modules among processes

9

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

si

st
e

m
i o

p
e

ra
tiv

i a
.a

.
2

0
0

5
-2

0
0

6
 memory management

requirements for processes
• physical organization

– memory available for a program plus its data may
be insufficient

• Overlaying allows various modules to be assigned the
same region of memory

– programmer does not know how much memory
will be available

10

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

si

st
e

m
i o

p
e

ra
tiv

i a
.a

.
2

0
0

5
-2

0
0

6

techniques that do not involves
virtual memory

11

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

si

st
e

m
i o

p
e

ra
tiv

i a
.a

.
2

0
0

5
-2

0
0

6

Fixed Partitioning

• Equal-size partitions
– Any process whose size is less than or equal to

the partition size can be loaded into an available
partition

– If all partitions are full, the operating system can
swap a process out of a partition

– A program may not fit in a partition. The
programmer must design the program with
overlays

12

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

si

st
e

m
i o

p
e

ra
tiv

i a
.a

.
2

0
0

5
-2

0
0

6

Fixed Partitioning

• Main memory use is inefficient. Any program,
no matter how small, occupies an entire
partition. This is called internal
fragmentation.

13

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

si

st
e

m
i o

p
e

ra
tiv

i a
.a

.
2

0
0

5
-2

0
0

6
 partitions size

14

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

si

st
e

m
i o

p
e

ra
tiv

i a
.a

.
2

0
0

5
-2

0
0

6
 Placement Algorithm with

Partitions
• Equal-size partitions

– Because all partitions are of equal size, it does
not matter which partition is used

• Unequal-size partitions
– Can assign each process to the smallest partition

it will fit into

– Queue for each partition

– Processes are assigned in such a way as to
minimize wasted memory within a partition

15

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

si

st
e

m
i o

p
e

ra
tiv

i a
.a

.
2

0
0

5
-2

0
0

6
 Placement Algorithm with

Partitions

16

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

si

st
e

m
i o

p
e

ra
tiv

i a
.a

.
2

0
0

5
-2

0
0

6
 dynamic partitioning and

compaction
• Partitions are of variable length and number
• Process is allocated exactly as much memory

as required
• Eventually get holes in the memory. This is

called external fragmentation
• Must use compaction to shift processes so

they are contiguous and all free memory is in
one block
– in the general case compaction may be

unfeasible (C/C++ allocators)

17

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

si

st
e

m
i o

p
e

ra
tiv

i a
.a

.
2

0
0

5
-2

0
0

6

external fragmentation

18

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

si

st
e

m
i o

p
e

ra
tiv

i a
.a

.
2

0
0

5
-2

0
0

6

external fragmentation

19

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

si

st
e

m
i o

p
e

ra
tiv

i a
.a

.
2

0
0

5
-2

0
0

6
 Dynamic Partitioning Placement

Algorithm
• Operating system must decide which free

block to allocate to a process
• Best-fit algorithm

– Chooses the block that is closest in size to the
request

– Worst performer overall
• since smallest block is found for process, the smallest

amount of fragmentation is left

– Memory compaction must be done more often

20

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

si

st
e

m
i o

p
e

ra
tiv

i a
.a

.
2

0
0

5
-2

0
0

6
 Dynamic Partitioning Placement

Algorithm
• First-fit algorithm

– Scans memory form the beginning and chooses
the first available block that is large enough

– Fastest

– May have many process loaded in the front end
of memory that must be searched over when
trying to find a free block

21

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

si

st
e

m
i o

p
e

ra
tiv

i a
.a

.
2

0
0

5
-2

0
0

6
 Dynamic Partitioning Placement

Algorithm
• Next-fit

– Scans memory from the location of the last
placement

– More often allocate a block of memory at the end
of memory where the largest block is found

– The largest block of memory is broken up into
smaller blocks

– Compaction is required to obtain a large block at
the end of memory

22

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

si

st
e

m
i o

p
e

ra
tiv

i a
.a

.
2

0
0

5
-2

0
0

6
 examples

• allocation of a
block of 16MB

23

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

si

st
e

m
i o

p
e

ra
tiv

i a
.a

.
2

0
0

5
-2

0
0

6

• entire space available is treated as a single
block of 2U

• a request of s bytes returns a block of
ceil(log2 s) bytes

– if a request of size s such that 2i-1 < s <= 2i, a
block of length 2i is allocated

– a 2i block can be split into two equal buddies of
2i-1 bytes

– for each request a “big” block is found and split
until the smallest block greater than or equal to s
is generated

Buddy System

24

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

si

st
e

m
i o

p
e

ra
tiv

i a
.a

.
2

0
0

5
-2

0
0

6

• it maintains a lists L
i
 (i=1..U) of unallocated

blocks (holes) of size 2i

– splitting: remove a hole from L
i+1

 split it, and put

the two buddies it into L
i

– coalescing: remove two unallocated buddies from
L

i
 and put it into L

i+1

Buddy System

25

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

si

st
e

m
i o

p
e

ra
tiv

i a
.a

.
2

0
0

5
-2

0
0

6

buddy system: example

26

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

si

st
e

m
i o

p
e

ra
tiv

i a
.a

.
2

0
0

5
-2

0
0

6

procedure get_hole

input: i (precondition: i≤U)

output: a block c of size 2i (postcondition: Li does
not contain c)

if (L
i
 is empty)

b= get_hole(i+1);

< split b into two buddies b
1
 and b

2
>

< put b
1
 and b

2
 into L

i
>

c= < first hole in L
i
>

<remove c form L
i
>

return c

Buddy System

27

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

si

st
e

m
i o

p
e

ra
tiv

i a
.a

.
2

0
0

5
-2

0
0

6

buddy system: tree representation

28

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

si

st
e

m
i o

p
e

ra
tiv

i a
.a

.
2

0
0

5
-2

0
0

6

relocation

• a process may occupy different partitions, which
means different absolute memory locations

• when program load into memory the absolute
memory locations are determined

– different execution may lead to different locations

• on-the-fly relocation during execution

– swap out and swap in

– compaction of allocated partitions

29

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

si

st
e

m
i o

p
e

ra
tiv

i a
.a

.
2

0
0

5
-2

0
0

6

addresses in the program

• Physical
– The absolute address or actual location in main memory

• Logical
– Reference to a location in a “logical” memory independent

of the current assignment of data to memory

– Translation must be made to the physical address by the
hardware (MMU)

• Relative (logical or physical)
– Address expressed as a location relative to some known

point

30

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

si

st
e

m
i o

p
e

ra
tiv

i a
.a

.
2

0
0

5
-2

0
0

6
 hardware support for relocation

31

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

si

st
e

m
i o

p
e

ra
tiv

i a
.a

.
2

0
0

5
-2

0
0

6

Registers Used during Execution

• Base register
– Starting address for the process

• Bounds register
– Ending location of the process

• These values are set when the process is
loaded or when the process is swapped in

32

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

si

st
e

m
i o

p
e

ra
tiv

i a
.a

.
2

0
0

5
-2

0
0

6

Registers Used during Execution

• The value of the base register is added to a
relative address to produce an absolute
address

• The resulting address is compared with the
value in the bounds register

• If the address is not within bounds, an
interrupt is generated to the operating system

33

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

si

st
e

m
i o

p
e

ra
tiv

i a
.a

.
2

0
0

5
-2

0
0

6

Paging

• Partition memory into small equal fixed-size chunks
and divide each process into the same size chunks

• The chunks of a process are called pages and
chunks of memory are called frames

• Operating system maintains a page table for each
process
– Contains the frame location for each page in the

process
– Memory address consist of a page number and

offset within the page

34

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

si

st
e

m
i o

p
e

ra
tiv

i a
.a

.
2

0
0

5
-2

0
0

6
 Assignment of Process Pages to Free

Frames

35

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

si

st
e

m
i o

p
e

ra
tiv

i a
.a

.
2

0
0

5
-2

0
0

6
 Assignment of Process Pages to Free

Frames

36

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

si

st
e

m
i o

p
e

ra
tiv

i a
.a

.
2

0
0

5
-2

0
0

6
 Page Tables

37

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

si

st
e

m
i o

p
e

ra
tiv

i a
.a

.
2

0
0

5
-2

0
0

6

Segmentation

• All segments of all programs do not have to
be of the same length

• There is a maximum segment length

• Addressing consist of two parts - a segment
number and an offset

• Since segments are not equal, segmentation
is similar to dynamic partitioning

38

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

si

st
e

m
i o

p
e

ra
tiv

i a
.a

.
2

0
0

5
-2

0
0

6
 paging vs. segmentation

39

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

si

st
e

m
i o

p
e

ra
tiv

i a
.a

.
2

0
0

5
-2

0
0

6

logical to physical translation
paging

40

©
 2

0
0

5
-2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia

si

st
e

m
i o

p
e

ra
tiv

i a
.a

.
2

0
0

5
-2

0
0

6

logical to physical translation
segmentation

