Process Description and
Control

Process

« A program in execution (running) on
a computer

* The entity that can be assigned to
and executed on a processor

A unit of activity characterized by
— a at least one sequential thread
— an associated set of system resources

— a current state of CPU (and other
resources)

Operating System and

Processes

* Interleave the execution of multiple
Processes
— maximize processor utilization
— providing reasonable response time

 Allocate resources to processes

« Support interprocess communication and
user creation of processes

Operating System and
Processes

executes In
user mode

Process 71

Process 2

executes in
kernel mode

Process n

H f H 4 system f H g
By e RV
e Kernelkﬁ @

Process Creation

Table 3.1 Reasons for Process Creatfion

New batch job

Interactive logon

Created by OS5 to provide a service

Spawned by existing process

The operating svstem is provided with a batch job control
stream_ usually on tape or disk. When the operating svstem
is prepared to take on new work, it will read the next
sequence of job control commands.

A user at a terminal logs on to the system.
The operating system can create a process to perform a
function on behalf of a user program, without the user

having to wait (e.g.. a process to control printing).

For purposes of modularity or to exploit parallelism, a user
program can dictate the creation of a number of processes.

Process Termination

Normal completion The process executes an OS5 service call to indicate that it has
completed running.

Time limit exceeded The process has run longer than the specified total time limit.
There are a number of possibilities for the type of time that 1s
measured. These include total elapsed time ("wall clock time"),
amount of time spent executing, and. in the case of an interactive
process, the amount of time since the user last provided anv input.

Memory unavailable The process requires more memory than the system can provide.

Bounds violation The process tries to access a memory location that it is not allowed
to access.

Protection error The process attempts to use a resource such as a file that it is not

allowed to use, or it tries to use it in an improper fashion, such as
writing to a read-only file.

Arithmetic error The process tries a prohibited computation, such as division by
7ero, of tries to store numbers larger than the hardware can
accommodate.

Process Termination

Time overrun

I'O failure

Inwvalid instruction

Privileged instruction

Data misuse

Operator or OS intervention

Parent termination

Parent request

The process has waited longer than a specified maximum for a
certain event to occur.

An error occurs during input or output, such as inability to find a
file, failure to read or write after a specified maximum number of
tries (when, for example, a defective area is encountered on a

tape), or invalid operation (such as reading from the line printer).

The process attempts to execute a nonexistent instruction (often a
result of branching into a data area and attempting to execute the

data).

The process attempts to use an instruction reserved for the
operating system.

A piece of data is of the wrong type or is not initialized.

For some reason, the operator or the operating system has
terminated the process (for example, if a deadlock exists).

When a parent terminates, the operating system may automatically
terminate all of the offspring of that parent.

A parent process typically has the authonty to terminate any of its offspring.

Trace of Process

« Sequence of instruction (addresses) for each
process

5000 8000 12000
5001 8001 12001
5002 8002 12002
5003 8003 12003
5004 12004
5005 12005
5006 12006
5007 12007
5008 12008
5009 12009
5010 12010
5011 12011
(a) Trace of Process A | (b) Trace of Process B | (c) Trace of Process C

5000 = Starting address of program of Process A
8000 = Starting address of program of Process B
12000 = Starting address of program of Process C

scheduler and dispatcher

» scheduler: part of the kernel that decides which
Is the next process executed by the CPU

 dispatcher: part of the kernel that set up the
CPU registers to execute the process

— restore the context for the process
* iIn moder OS usually scheduling and

dispatching are performed together by the
same routine

— we use “scheduler” or “dispatcher” depending on
the aspect we need to emphasize

Dispatcher

* The dispatcher
switches the
processor from
one process to
another (process
switch)

Oy L e L b =

Time out

--------------- 1/0 request

17
18
19
20
21
22
23
24
23
26

100 = Starting address of dispatcher program

100
101
102
103
104
105
12000
12001
12002
12003

27 12004
28 12005
20 100
0 10
31 102
32 103
33 104
34 105
33 5006
36 5007
37 5008
38 5009
39 5010
40 3011
41 100
42101
43 102
44 103
45 104
46 105
47 12006
48 12007
40 12008
50 12009
51 12010
52 12011

shaded areas indicate exscution of dispatcher process;

first and third columns count instruction cycles:

second and fourth columns show address of instruction being executed

Time out

Time out

Address Wain Memory

Processes .
and
Memory =

§000

12000

Program Counter

B0

Dispatcher

Process A

Process B

Process C

Two-State Process Model

Dispatch

/_\

Enter Mot Exit
--

Running Running -

‘\//

Pause

(a) State transition diagram

Queue
Enter] Dispatch Exit

l o | Processor -

Pause

{(b) Queuing diagram

12

New

Five-State Process Model

o Dispatch |
—_— Ready Running — i
—)

Figure 3.6 Five-State Process Model

Exit

13

Process States

Process A

Process B

Process C

Dispatcher

40

LT
o

20

10

Running

Figure 3.7 Process States for Trace of Figure 3.4

14

One sequential I/O device

Ready Queue - Release

Admit

Processor

Dispatch

Timeout

Blocked Queue

Event Wait

Event o
Occurs
Dvispatch
Admit — R 4 Release 4
New —_— Ready Running — Exit
-—
1 Timeout

Event
Oceurs

Blocked
15

Many sequential I/O devices

Ready Queue Release
Admit Dispatch
- Processor
1 —
Timeout
-l
Event 1 Queue Event 1 Wait
Event 1 ven al
Oceurs -
Event 2 Queue o
Event 2 , . Event 2 Wait
Occurs
¥
¥
¥
Event # Queue
Event n - Event n Wait
Oceurs

(b) Multiple blocked queues

Suspended Processes

Processor is faster than [/O so many
processes could be waiting for I/O

Swap these processes to disk to free
up memory

Blocked state becomes suspend
state when swapped to disk

Two new states
— Blocked/Suspend
— Ready/Suspend

17

Two New States

‘x?'ﬁ"
) S
v ,
#'# .
Activate i Dispatch ™~
Ready/ = e eady > unni Release -l Ex
Suspend - cady g unning xit
A Suspend Timeout
=HE HE
e z
= - =
Activate -
Blocked/f
Suspend - Blocked
Suspend

(b) With Two Suspend States 3

Several Reasons for
Process Suspension

Swapping The operating system needs to release sufficient main
memory to bring in a process that is ready to execute.

Other OS reason The operating system may suspend a background or utility
process or a process that is suspected of causing a problem.

Interactive user request A user mav wish to suspend execution of a program for
purposes of debugging or in connection with the use of a
resource.

Timing A process may be executed periodically (e.g__ an

accounting or system monitoring process) and may be
suspended while waiting for the next time interval

Parent process request A parent process may wish to suspend execution of a
descendent to examine or modify the suspended process, or
to coordinate the activity of various descendents.

process description

20

Process Image

Table 3.4 Tvpical Elements of a Process Image

User Data
The modifiable part of the user space. May include program data, a user stack area, and
programs that mav be modified.

User Program
The program to be executed.

Svstem Stack
Each process has one or more last-in-first-out (LIFO) system stacks associated with it. A
stack is used to store parameters and calling addresses for procedure and system calls.

Process Control Block
Data needed by the operating system to control the process (see Table 3.5).

21

OS controls assignment of
resources to processes

» the OS maintains many data structures for
this purpose

22

Process Control Block (PCB)

contains data about one

Process
— one instance for each process

contains all the information we

need to...

— ...Interrupt a running process
— ...resume execution

created and managed by the
operating system

allows support for multiple
processes

Identifier

State

Priority

Program counter

Memory pointers

Context data

I/0 status
information

Accounting

information

23

Process Elements in PCB
they largely depend on the OS

Process Identifier (PID)
State (ready, blocked, etc.)

— iIf blocked, events the process is waiting for
Priority (for the scheduler)

saved CPU registers and PC (a.k.a. context)
Memory pointers (program, data, stack, tables, etc.)

/O status information (open files, outstanding I/O
requests, inter-processes comunication, etc)

Accounting information (CPU time used, limits, etc.)
user that owns the process, and/or privileges
process that created the process

24

Data Structuring

« PCB — PCB pointers

— parent-child (creator-created) relationship with
another process

e queues

— all processes in a waiting state for a particular
priority level may be linked in a queue.

25

Process Creation

Assign a unigue process identifier
Allocate space for the process
Initialize process control block

Set up appropriate linkages

— e.g. add new process to linked list used for
scheduling queue

Create or expand other data structures
— e.g. maintain an accounting file

26

PCB synonyms

» process descriptor
 task control block
 task descriptor

linux
» task struct

27

PCB related data structures

process table
memory tables

/O tables
file tables

28

Process Table

* one entry for each process

e contains a minimal amount of
information needed to activate the
Process
— usually a “pointer” to the PCB

— It may be a complex data structure
(tree, hash table, ecc.)

29

Memory Tables

Allocation of main memory to
processes

Allocation of secondary memory to
processes

Protection attributes for access to
shared memory regions

Information needed to manage
virtual memory

30

/O Tables

* |/O device is available or assigned

« Status of |/O operation

* Location in main memory being used
as the source or destination of the

/O transfer

31

File Tables

Existence of files

Location on secondary memory
Current Status

Attributes

Sometimes this information is
maintained by a file management
system

32

process control

33

mode switch
 twWO cases

— user-mode — kernel-mode
« triggered by an interrupt or a system call
 set cpu in priviledged mode
* may save the cpu state

— kernel-mode — user-mode

« triggered by the kernel when it “decides” to
resume process execution

 set cpu in unpriviledged mode
« may restore all or part of the cpu state

34

mode switch

* it Is not a process switch
* not necessarily implies a process switch
* many system calls require a mode switch

35

process switch (dispatching)

* a process switch assigns the cpu to a
different process

— before: P_ running, P, ready

— after: P_ not running, P_ running

* it is performed in kernel-mode

— It requires two mode switches

1 user-mode — kernel-mode before the process switch
— triggered by interrupt, trap or system call
— kernel possibly fulfill a request (e.g. 1/0)

2 kernel-mode — user-mode after the process switch
— into the process chosen by the kernel (scheduler)

36

process switch

* it modifies OS data structures
— set proper state in PCB of P_and P,

— update queues
- move P into the appropriate queue

« Move P2 out of the ready queue

— update CPU memory tables for the image of P,

 the next mode switch (kernel-mode — user-
mode) will restore the cpu state of P,

37

typical situations for
switching mode and/or process

» Clock interrupt
— process has executed for the maximum
allowable time slice
— always switch process

» system call
— process switch when it is a blocking 1/0O
request
— OS may check if other processes have greater
priority and possibly switch process

38

typical situations for
switching mode and/or process

 |/O interrupt
— a blocked process may become ready
— process switch depends on OS policies and
priorities
* Trap
— error or exception

« current process usually die and process is switched
— memory fault (virtual memory)

« current process becomes blocked (waiting for the
page) and process is switched

39

execution of the OS

» the OS is executed by the cpu
* |s the OS a process?

» several architectures are possible
— non-process kernel
— kernel execution within user processes
— process-based operating system

40

non-process kernel

» kernel is executed outside of any process
— when it is executed cpu is in privileged mode

— kernel has its own “memory space”
* there is not a OS process anyway!
« inefficient

— kernel implements tricks to access the images
of processes

— obsolete

41

Execution Within User
Processes

 large part of the kernel executes within the
context of a user process

— no reconfiguration of CPU memory table is
needed (efficient)

— kernel execution need only a mode switch

— Process executes in privileged mode when
executing operating system code

Py P P,

0s 0s 0s

Func- Func- . o @ [Func-
tions tions tions

Process Switching Functions

Execution Within ehenion
Processor State Process Control
User PrOcesseS In[‘m'mrrllil:tml Block
Process Control
» each process has its {nformation
own image User Stack
* Image contains also
_ kernel stack Address Space
(Programs, Data)
— kernel program
— kernel data
Kernel Stack
» kernel program and data

are shared by all images

— kernel mode is needed to
read and write them = tooooooo__

Shared Address
Space

L R N N N N N N N _§]
L-'-'-'-'-'-'-'-'-'-

Execution Within User
Processes

» to fulfill a system call, interrupt or trap
— mode is switched
— process is not switched
— current usable image remain the same

— both kernel data and current process data can
be accessed

 a process switch occours if and only if a
new process Is scheduled and dispatched

— process switch is the only activity that can be
considerd outside of any process

44

Execution Within User
Processes

* All UNIX systems adopt this approach

45

process-based OS (microkernel)

* Implement the os as a collection of system
processes

» each system call pays a process switch
penalty and an “inter-process message”
penalty

» process switch and inter-process
comunication are the only activities that can
be considerd outside of any process

P] Pz . 8 @ Pﬂ {:}Sl . ® @ {}Sk-

‘ Process Switching Functions

process-based OS: design choice

* may processes run in kernel mode to
access hardware?

 drivers are implemented in the kernel or as
processes”?

» consider the efficiency of the alternatives of
an |/O operation

—how many inter-processes messages?
—how many mode switches?

—how many process switches?

—how many times dispatcher run? 47

process-based OS (microkernel)

modular and robust

flexible
— services may be added, removed or distributed

» quite inefficient

» portable
— only the microkernel depends on hardware

* Windows adopts this approach

48

