
1

©
 2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

Process Description and
Control

2

©
 2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

Process

• A program in execution (running) on
a computer

• The entity that can be assigned to
and executed on a processor

• A unit of activity characterized by
– a at least one sequential thread

– an associated set of system resources

– a current state of CPU (and other
resources)

3

©
 2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

Operating System and
Processes

• Interleave the execution of multiple
processes
– maximize processor utilization

– providing reasonable response time

• Allocate resources to processes

• Support interprocess communication and
user creation of processes

4

©
 2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

Operating System and
Processes

Kernel

P
ro

ce
ss

 1

P
ro

ce
ss

 2

P
ro

ce
ss

 n

executes in
user mode

executes in
kernel mode

system
call

.....

5

©
 2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

Process Creation

6

©
 2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

Process Termination

7

©
 2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

Process Termination

8

©
 2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

Trace of Process
• Sequence of instruction (addresses) for each

process

9

©
 2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

scheduler and dispatcher
• scheduler: part of the kernel that decides which

is the next process executed by the CPU

• dispatcher: part of the kernel that set up the
CPU registers to execute the process
– restore the context for the process

• in moder OS usually scheduling and
dispatching are performed together by the
same routine
– we use “scheduler” or “dispatcher” depending on

the aspect we need to emphasize

10

©
 2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

• The dispatcher
switches the
processor from
one process to
another (process
switch)

Dispatcher

11

©
 2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

Processes
and

Memory

12

©
 2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

Two-State Process Model

13

©
 2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

Five-State Process Model

14

©
 2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

Process States

15

©
 2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

One sequential I/O device

16

©
 2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

Many sequential I/O devices

17

©
 2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

Suspended Processes

• Processor is faster than I/O so many
processes could be waiting for I/O

• Swap these processes to disk to free
up memory

• Blocked state becomes suspend
state when swapped to disk

• Two new states
– Blocked/Suspend
– Ready/Suspend

18

©
 2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

Two New States

19

©
 2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

Several Reasons for
Process Suspension

20

©
 2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

process description

21

©
 2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

Process Image

22

©
 2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

OS controls assignment of
resources to processes

• the OS maintains many data structures for
this purpose

23

©
 2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

Process Control Block (PCB)
• contains data about one

process
– one instance for each process

• contains all the information we
need to...
– ...interrupt a running process
– ...resume execution

• created and managed by the
operating system

• allows support for multiple
processes

24

©
 2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

Process Elements in PCB
 they largely depend on the OS

• Process Identifier (PID)
• State (ready, blocked, etc.)

– if blocked, events the process is waiting for
• Priority (for the scheduler)
• saved CPU registers and PC (a.k.a. context)
• Memory pointers (program, data, stack, tables, etc.)
• I/O status information (open files, outstanding I/O

requests, inter-processes comunication, etc)
• Accounting information (CPU time used, limits, etc.)
• user that owns the process, and/or privileges
• process that created the process

25

©
 2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

Data Structuring
• PCB – PCB pointers
– parent-child (creator-created) relationship with

another process

• queues
– all processes in a waiting state for a particular

priority level may be linked in a queue.

26

©
 2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

Process Creation

• Assign a unique process identifier

• Allocate space for the process

• Initialize process control block

• Set up appropriate linkages
– e.g. add new process to linked list used for

scheduling queue

• Create or expand other data structures
– e.g. maintain an accounting file

27

©
 2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

PCB synonyms

• process descriptor

• task control block

• task descriptor

linux

• task_struct

28

©
 2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

PCB related data structures

• process table

• memory tables

• I/O tables

• file tables

29

©
 2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

Process Table

• one entry for each process

• contains a minimal amount of
information needed to activate the
process
– usually a “pointer” to the PCB

– it may be a complex data structure
(tree, hash table, ecc.)

30

©
 2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

Memory Tables

• Allocation of main memory to
processes

• Allocation of secondary memory to
processes

• Protection attributes for access to
shared memory regions

• Information needed to manage
virtual memory

31

©
 2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

I/O Tables

• I/O device is available or assigned

• Status of I/O operation

• Location in main memory being used
as the source or destination of the
I/O transfer

32

©
 2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

File Tables

• Existence of files

• Location on secondary memory

• Current Status

• Attributes

• Sometimes this information is
maintained by a file management
system

33

©
 2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

process control

34

©
 2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

mode switch
• two cases
– user-mode → kernel-mode
• triggered by an interrupt or a system call

• set cpu in priviledged mode

• may save the cpu state

– kernel-mode → user-mode
• triggered by the kernel when it “decides” to

resume process execution

• set cpu in unpriviledged mode

• may restore all or part of the cpu state

35

©
 2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

mode switch
• it is not a process switch

• not necessarily implies a process switch

• many system calls require a mode switch

36

©
 2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

process switch (dispatching)
• a process switch assigns the cpu to a

different process

– before: P
1
 running, P

2
 ready

– after: P
1
 not running, P

2
 running

• it is performed in kernel-mode
– it requires two mode switches

1 user-mode → kernel-mode before the process switch
– triggered by interrupt, trap or system call

– kernel possibly fulfill a request (e.g. I/O)

2 kernel-mode → user-mode after the process switch
– into the process chosen by the kernel (scheduler)

37

©
 2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

process switch

• it modifies OS data structures

– set proper state in PCB of P
1
 and P

2

– update queues

• move P
1
 into the appropriate queue

• move P
2
 out of the ready queue

– update CPU memory tables for the image of P
2

• the next mode switch (kernel-mode → user-
mode) will restore the cpu state of P

2

38

©
 2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

typical situations for
switching mode and/or process
• Clock interrupt
– process has executed for the maximum

allowable time slice
– always switch process

• system call
– process switch when it is a blocking I/O

request
– OS may check if other processes have greater

priority and possibly switch process

39

©
 2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

typical situations for
switching mode and/or process
• I/O interrupt
– a blocked process may become ready

– process switch depends on OS policies and
priorities

• Trap
– error or exception
• current process usually die and process is switched

– memory fault (virtual memory)
• current process becomes blocked (waiting for the

page) and process is switched

40

©
 2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

execution of the OS

• the OS is executed by the cpu

• is the OS a process?

• several architectures are possible
– non-process kernel

– kernel execution within user processes

– process-based operating system

41

©
 2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

non-process kernel

• kernel is executed outside of any process
– when it is executed cpu is in privileged mode

– kernel has its own “memory space”
• there is not a OS process anyway!

• inefficient

– kernel implements tricks to access the images
of processes

– obsolete

42

©
 2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

Execution Within User
Processes

• large part of the kernel executes within the
context of a user process
– no reconfiguration of CPU memory table is

needed (efficient)

– kernel execution need only a mode switch

– Process executes in privileged mode when
executing operating system code

43

©
 2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

Execution Within
User Processes

• each process has its
own image

• image contains also
– kernel stack

– kernel program

– kernel data

• kernel program and data
are shared by all images
– kernel mode is needed to

read and write them

44

©
 2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

Execution Within User
Processes

• to fulfill a system call, interrupt or trap
– mode is switched

– process is not switched

– current usable image remain the same

– both kernel data and current process data can
be accessed

• a process switch occours if and only if a
new process is scheduled and dispatched
– process switch is the only activity that can be

considerd outside of any process

45

©
 2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

Execution Within User
Processes

• All UNIX systems adopt this approach

46

©
 2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

process-based OS (microkernel)
• Implement the os as a collection of system

processes
• each system call pays a process switch

penalty and an “inter-process message”
penalty

• process switch and inter-process
comunication are the only activities that can
be considerd outside of any process

47

©
 2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

process-based OS: design choice
• may processes run in kernel mode to

access hardware?
• drivers are implemented in the kernel or as

processes?

• consider the efficiency of the alternatives of
an I/O operation

– how many inter-processes messages?

– how many mode switches?

– how many process switches?

– how many times dispatcher run?

48

©
 2

0
0

6
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

0
5

-2
0

0
6

process-based OS (microkernel)

• modular and robust

• flexible
– services may be added, removed or distributed

• quite inefficient

• portable
– only the microkernel depends on hardware

• Windows adopts this approach

