/O management and disk
scheduling

Categories of |/O Devices

 Human readable
- Used to communicate with the user
- Printers

- Video display terminals
* Display
* Keyboard
* Mouse

Categories of |/O Devices

e Machine readable

- Used to communicate with electronic
equipment

- Disk and tape drives
- Sensors

- Controllers

— Actuators

Categories of |/O Devices

e Communication

- Used to communicate with remote
devices

- Digital line drivers
- Modems

Differences in I/O Devices

* May be differences of several orders of
magnitude between the data transfer rates

Gigabit Ethernet

Graphics display

Hard disk

Ethernet

Optical disk

Scanner

Laser printer

Floppy disk

Modem

Mouse

Kevboard

I
I

—

102 108 104 106 107 108 107

—

p—

=
=1

Data Rate (bps)

Differences in I/O Devices

* Application
- Disk used to store files requires file
management software

— Disk used to store virtual memory
pages needs special hardware and
software to support it

- Terminal used by system administrator
may have a higher priority

Differences in I/O Devices

Complexity of control

Unit of transfer

- Data may be transferred as a stream of
bytes for a terminal or in larger blocks for a
disk

Data representation

- Encoding schemes

Error conditions

- Devices respond to errors differently
* missed tcp segments may be retransmitted

* disk errors are usually unrecoverable

blocks and streams

* Block-oriented
- Information is stored in fixed sized blocks
- Used for disks and tapes
— devices can transfer only in blocks

e Stream-oriented
- Transfer information as a stream of bytes

- Used for terminals, printers, communication
ports, mouse and other pointing devices,
and most other devices that are not
secondary storage

Performing I/O

Techniques Architectures

* Programmed * direct control of
- busy-waiting device

* Interrupt-driven e controller +

e DMA programmed 1/O

* controller +
interrupt-driven

e controller + DMA
* |/O processor

Operating System Design
Issues

* Efficiency

- Most I/O devices extremely slow
compared to main memory

- Use of multiprogramming allows for
some processes to be waiting on |/O
while another process executes

- 1/0O cannot keep up with processor
speed

- Swapping is used to bring in additional

Ready processes
e ... and this requires further 1/O operations

Operating System Design
Issues

* Generality

— Desirable to handle all I/O devices in a
uniform manner

- Hide most of the details of device I/O

In lower-level routines
* upper levels use abstract primitives: read,
write, open, close, lock, unlock

110 e o=
architecture

models
* |ogical I/O T :
- e.g. open,
read, write, bytet |

4

close P
n n m
e communication I

architecture
- e.g. TCP/IP

ia) Local peripheral device

/O Buffering

* Reasons for buffering

- write: processes must wait for /O to
complete before proceeding

- read: optimization is possible
* read haead

- without buffering pages destination of
/O must remain in main memory
during 1/O

* no full swap out is possible!

Single Buffer

* Operating system assigns a buffer in
system memory for an /O request

* Block-oriented

- block input transfers are directed to the
buffer

- buffer content is moved to user space
when requested by the process

— Another block is moved into the buffer
e Read ahead

Single Buffer

* Block-oriented

— User process can process one block of
data while next block is read in

— Swapping can occur since input is
taking place in system memory, not
user memory

- Operating system keeps track of
assignment of system buffers to user
processes

Single Buffer

e Stream-oriented
- streams can be segmented in fixed or
variable size chunks

- For terminals: one line at time

e User input from a terminal is one line at a
time with carriage return signaling the end
of the line

e Output to the terminal is one line at a time

L/O) Device

/0 Device

/O Buffering

Operating System Lser Process
i ™
In
o
(a) No bulTering
Operating System User Process
N B
In Move
o v

(b) Single buffering

no buffer

* T:input (output) time for one block
e C: computation time after input (input)

computation C C
input/output T T

time >

18

no buffer

Total time for each block:
e T+(C

— Input: we suppose process cannot read while
processing the previous block

— output: we suppose process cannot compute while is
waiting for output to finish.

question: are these assumptions always valid?

19

single buffer (input)
* we suppose the operating system can read ahead

- if T>C the process waits for the buffer to be filled
- if T<C the OS waits for the buffer to be free

computation C C C

e T>C transfer M M M
input/output T T T

time >

computation C C C
transfer M M M
¢ T<C input/output T T T

time >
* max[T,C]+M

- M: time to move data from system buffer to user space
20

single buffer (output)

* we suppose the application does not need to wait until
actual end of output operation

- if T>C the process waits for buffer to be free
- if T<C the OS waits for the buffer to be filled

computation C C C

e T>C transfer M M M
input/output T T T

time >

computation C C C
transfer M M M
e T<C Tnputioutput T T T

time >

* max[T,C]+M

- M: time to move data from user space to system buffer

Double Buffer

* Use two system buffers instead of one

* A process can transfer data to or from
one buffer while the operating system
empties or fills the other buffer

Operating System User Process
y ™ { ™
" In ad . Move |
/0 Device b o 4 o
\. v \, >

(¢} Double buffering

double buffer (input)
* max[C+M, T]
e T>C, input

computation C Y C o
transfer M, /Mz /M1

input T2 ' T1 ' Tz
switch switch switch
e T<C, input
computation C ¥ C Y C “w C
transfer WMQ
input T2 T1 T2 T2

switch switch switch switch

23

double buffer (output)
e max[C+M, T]
e T>C, output

computation C

M1 M2 M'I/ M2
transfer Tz\‘ T1\ . \ \

output T

1

switch switch switch switch

 T<C, output

computation C o C Y C a C
transfer M, Mzd‘ M, __ 4 Mzﬂ
output T, T, T, T,

switch switch switch switch

24

Circular Buffer

* Buffers also smooth speed differences
* More than two buffers may be used

Operating System User Process

: (T
1/O Device In L Maye I
¥
= L 3

(d) Circular buffering

disk scheduling

Disk Performance
Parameters

* To read or write, the disk head must
be positioned at the desired track
and at the beginning of the desired
sector

e Seek time

- Time it takes to position the head at
the desired track

* Rotational delay or rotational latency

- Time it takes for the beginning of the
sector to reach the head

Timing of a Disk I/O
Transfer

Wait for Wait for Seek
Device Channel

e Device Busy

Rotational
Delay

Data
Transfer

Figure 11.6 Timing of a Disk I/O Transfer

Disk Performance
Parameters

* Access time
- Sum of seek time and rotational delay

- The time it takes to get in position to
read or write

e Data transfer occurs as the sector
moves under the head

Disk Scheduling Policies

* Seek time is the reason for
differences in performance

* For a single disk there will be a
number of I/O requests

* |[f requests are selected randomly,
we will poor performance

Disk Scheduling Policies

* First-in, first-out (FIFO)
- Process request sequentially
- Fair to all processes

- if there are many processes it performs like
random scheduling

S0

100
125
150
175

199 i
ia) FIFO Time

track number

Disk Scheduling Policies

* Priority
- Goal is not to optimize disk use but to
meet other objectives

- Short batch jobs may have higher
priority
- Provide good interactive response time

Disk Scheduling Policies

e | ast-in, first-out
- Good for transaction processing

systems

* The device is given to the most recent
user so there should be little arm
movement

- Possibility of starvation since a job
may never regain the head of the line

Disk Scheduling Policies

e Shortest Service Time First

- Select the disk I/O request that requires the least
movement of the disk arm from its current
position

- Always choose the minimum Seek time
- Possibility of starvation

track number
=
=

199 -
(b SSTF Time

Disk Scheduling Policies

e SCAN (LOOK)

- no starvation

- Arm moves in one direction only, satisfying all
outstanding requests until it reaches the last
track in that direction

— Direction is reversed

0

25
S0
75
100
125
150
175

199 —-
(c) SCAN Time

track number

Disk Scheduling Policies

C-SCAN

- Restricts scanning to one direction only

- When the last track has been visited in one
direction, the arm is returned to the opposite

end of the disk and the scan begins again

=
-E 50
2 73
5 100
125
150
175

—

I

199
(d) C-SCAN

track nu

Disk Scheduling Policies

* N-step-SCAN
- Segments the disk request queue into
subqueues of length N

- Subqueues are processed one at a
time, using SCAN

- New requests added to other queue
when queue is processed

* FSCAN

- Two queues
- One queue is empty for new requests

Disk Scheduling

Algorithms

Table 11.2 Comparison of Disk Scheduling Algorithms

(a) FIFO (b) S8TF (c) SCAN (d) C-SCAN
(starting at track 100} (starting at track 100} (starting at track 100, in the (starting at track 100, in the
direction of increasing track direction of increasing track
number) number)
Next track Number of Next track Number of Next track Number of Next track Number of
accessed tracks accessed tracks accessed tracks accessed tracks
traversed traversed traversed traversed
55 45 a0 10 150 50 150 50
58 3 58 32 160 10 160 10
39 19 55 3 184 24 184 24
18 21 39 16 a0 94 18 166
a0 72 38 1 58 32 38 20
160 70 18 20 55 3 39 1
150 10 150 132 39 16 0 16
38 112 160 10 38 1 58 3
184 146 184 24 18 20 a0 32
Average seek 553 Average seek 275 Average seek 278 Average seek 358
length length length length

RAID

* Redundant Array of Independent
Disks

* Set of physical disk drives viewed by
the operating system as a single
logical drive

e Data are distributed across the
physical drives of an array

* Redundant disk capacity is used to
store parity information

o oy g -

I
1 -

B oy o =

RAID O (non-redundant, striping)

B
=== = ==
strip 0 | strip 1| strip 2 | | strip 3
i s ™" |
strip 4 | strip 5 | sirip 6 | | sirip7
strip 8§ | strip 9 | strip 100 | | strip 11
™™ | e ™ e e |
strip 12 | | strip 13 | strip 14 | strip 15 |
p‘*--.___._._.--"I :"--.___._.--=‘I e

(a) RALD O (non-redundant)

* availability: lower than single disk
* |large I/O: very good
* high request rate: very good

40

Ty
T IR
strip O
[e]
strip 4
e
strip &

e
strip 12

strip 1
strip 5
strip 9

I""'-—.___.—-'"'I
i

strip 13

(bl RAID 1 imirrored)

* availability: high
* large |/O: very good for read

RAID 1

T
T TP

strip 2
e]
strip 6
™
strip 10
o
strip 14

|“-----.___.----“I
i

.,..-—'-—i—;,‘
e

strip 3
oo =
strip 7
e S
strip 11
e
strip 15

|“--.___.--"‘
I

"'-"'ll--nn_.'_---":"I
strip 0

e N
strip 4

T
sirip &

""--___--'""
strip 12

|"--.___.--“_
I

(mirrored

o~ Ty
.""-l-u.l_u_.u-—'""

strip 1
[=T
sirip 5
T RNy
strip 9
P e
strip 13

|"-----.___.-----"I
i

)

strip 2
i
strip 6
g e
strip 10
Sy
strip 14

|"--.___.--"_
I

* high request rate: very good for read

stﬁp 3
strip 7
strip 11
strip 15

RAID 2 (redundancy
through Hamming code)

ic) RAID 2 (redundancy through Hamming code)

disks should be syncronized

availability: high also for high bit error rate
large |/O: best!!!

high request rate: about twice single disk
expensive!

RAID 3 (bit-interleaved parity)

o T T, T
e e el s e
by | by by b Pib)
r— L
' i

(d) RALD 3 (bit-interleaved parity)

disks should be syncronized
availability: high
arge 1/O: best!!!

nigh request rate: about twice single disk

RAID 4 (block-level parity)

. e e, T —— :
block O bilock 1 block 2 block 3 P{0-3}
o e o P P
hilock 4 hilock 5 hlock & block 7 Pid-7)
et P e N Y e e
block 8 block 9 block 10 block 11 PiB=11)
block 12 hlock 13 block 14 hlock 15 Pi12-15)

i] i L] i L] i] i]

(e) RAID 4 (block-level parity)

disks are independent
availability: high

P is a bottlenek for write

arge 1/O: good, very bad for write

nigh request rate: very good for read, very bad
for write

RAID 5 (block-level
distributed parity

P Y E B = R T T
e o e S o
| block 0 | block 1 | block 2 | block 3 Pi0-3)
b e e e T e S ST
| block 4 bhxck 5 | block 6 Pid-7} block 7

| block 8 block 9 | P(8-11) | block 10 block 11
oo e e e e S e T B e B T e
| block 12 | P{12-15) | block 13 block 14 block 15
e — o el e, e P~ e
| Pilb=1%) block 16 | block 17 block 18 block 19
|"----.___.----"I

i ! I ! I ' 1 '

(F} RAID 5 (block-level distributed parity)

* disks are independent
* availability: high
* large I/O: very good, bad for write (no bottlenek)

* high request rate: very good for read, bad for
write

RAID 6 (dual redundancy)

T T, T, T, T, T T T,
block O block 1 block 2 block 3 PiD-3) Q(0-3)
] =] [] =] P] e]
block 4 block 5 block @ Pi4-T} i4-7) block 7
block 8 block 9 Pig-11) Qi8-11) block 11 block 11
block 12 Pi12-15) OQ(12-15) block 13 block 14 block 15

— —— —— — " ——

* availability: highest
- two disks may fail without data loss
* large |/O: very good for read, bad for write

* high request rate: very good for read, very bad
for write

