
1

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

04
-2

0
05

I/O management and disk
scheduling

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

Categories of I/O Devices

● Human readable
– Used to communicate with the user
– Printers
– Video display terminals

● Display
● Keyboard
● Mouse

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

Categories of I/O Devices

● Machine readable
– Used to communicate with electronic

equipment
– Disk and tape drives
– Sensors
– Controllers
– Actuators

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

Categories of I/O Devices

● Communication
– Used to communicate with remote

devices
– Digital line drivers
– Modems

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

Differences in I/O Devices
● May be differences of several orders of

magnitude between the data transfer rates

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

Differences in I/O Devices

● Application
– Disk used to store files requires file

management software
– Disk used to store virtual memory

pages needs special hardware and
software to support it

– Terminal used by system administrator
may have a higher priority

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

Differences in I/O Devices

● Complexity of control
● Unit of transfer

– Data may be transferred as a stream of
bytes for a terminal or in larger blocks for a
disk

● Data representation
– Encoding schemes

● Error conditions
– Devices respond to errors differently

● missed tcp segments may be retransmitted
● disk errors are usually unrecoverable

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

blocks and streams

● Block-oriented
– Information is stored in fixed sized blocks
– Used for disks and tapes
– devices can transfer only in blocks

● Stream-oriented
– Transfer information as a stream of bytes
– Used for terminals, printers, communication

ports, mouse and other pointing devices,
and most other devices that are not
secondary storage

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

Performing I/O

Techniques

● Programmed
– busy-waiting

● Interrupt-driven
● DMA

Architectures

● direct control of
device

● controller +
programmed I/O

● controller +
interrupt-driven

● controller + DMA
● I/O processor

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

Operating System Design
Issues

● Efficiency
– Most I/O devices extremely slow

compared to main memory
– Use of multiprogramming allows for

some processes to be waiting on I/O
while another process executes

– I/O cannot keep up with processor
speed

– Swapping is used to bring in additional
Ready processes

● ... and this requires further I/O operations

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

Operating System Design
Issues

● Generality
– Desirable to handle all I/O devices in a

uniform manner
– Hide most of the details of device I/O

in lower-level routines
● upper levels use abstract primitives: read,

write, open, close, lock, unlock

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

I/O
architecture

models

● logical I/O
– e.g. open,

read, write,
close

● communication
architecture
– e.g. TCP/IP

byte
oriented

packet
oriented disk sector

oriented

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

I/O Buffering

● Reasons for buffering
– write: processes must wait for I/O to

complete before proceeding
– read: optimization is possible

● read haead

– without buffering pages destination of
I/O must remain in main memory
during I/O

● no full swap out is possible!

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

Single Buffer

● Operating system assigns a buffer in
system memory for an I/O request

● Block-oriented
– block input transfers are directed to the

buffer
– buffer content is moved to user space

when requested by the process
– Another block is moved into the buffer

● Read ahead

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

Single Buffer

● Block-oriented
– User process can process one block of

data while next block is read in
– Swapping can occur since input is

taking place in system memory, not
user memory

– Operating system keeps track of
assignment of system buffers to user
processes

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

Single Buffer

● Stream-oriented
– streams can be segmented in fixed or

variable size chunks

– For terminals: one line at time
● User input from a terminal is one line at a

time with carriage return signaling the end
of the line

● Output to the terminal is one line at a time

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

I/O Buffering

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

18

no buffer

● T: input (output) time for one block

● C: computation time after input (input)

computation C C
input/output T T

time

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

19

no buffer

Total time for each block:

● T+C

– input: we suppose process cannot read while
processing the previous block

– output: we suppose process cannot compute while is
waiting for output to finish.

question: are these assumptions always valid?

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

20

single buffer (input)
● we suppose the operating system can read ahead

– if T>C the process waits for the buffer to be filled

– if T<C the OS waits for the buffer to be free

● max[T,C]+M

– M: time to move data from system buffer to user space

computation C C C
transfer M M M
input/output T T T

time

● T>C

● T<C
computation C C C
transfer M M M
input/output T T T

time

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

21

single buffer (output)
● we suppose the application does not need to wait until

actual end of output operation

– if T>C the process waits for buffer to be free

– if T<C the OS waits for the buffer to be filled

● max[T,C]+M

– M: time to move data from user space to system buffer

computation C C C
transfer M M M
input/output T T T

time

● T>C

● T<C

computation C C C
transfer M M M
input/output T T T

time

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

Double Buffer

● Use two system buffers instead of one
● A process can transfer data to or from

one buffer while the operating system
empties or fills the other buffer

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

23

double buffer (input)

computation C C C

transfer

input
switch switch switch

M
1

M
2

M
1

T
2

T
1

T
2

● max[C+M, T]

● T>C, input

computation C C C C

transfer

input
switch switch switch switch

M
1

M
2

M
1

M
2

T
2

T
1

T
2

T
2

● T<C, input

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

24

double buffer (output)

● T<C, output

computation C C C C

transfer

output
switch switch switch switch

M
1

M
2

M
1

M
2

T
1

T
2

T
1

T
2

● max[C+M, T]

● T>C, output

computation C C C C

transfer

output
switch switch switch switch

M
1

M
2

M
1

M
2

T
2

T
1

T
2

T
1

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

Circular Buffer

● Buffers also smooth speed differences
● More than two buffers may be used

26

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

04
-2

0
05

disk scheduling

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

Disk Performance
Parameters

● To read or write, the disk head must
be positioned at the desired track
and at the beginning of the desired
sector

● Seek time
– Time it takes to position the head at

the desired track
● Rotational delay or rotational latency

– Time it takes for the beginning of the
sector to reach the head

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

Timing of a Disk I/O
Transfer

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

Disk Performance
Parameters

● Access time
– Sum of seek time and rotational delay
– The time it takes to get in position to

read or write
● Data transfer occurs as the sector

moves under the head

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

Disk Scheduling Policies

● Seek time is the reason for
differences in performance

● For a single disk there will be a
number of I/O requests

● If requests are selected randomly,
we will poor performance

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

Disk Scheduling Policies

● First-in, first-out (FIFO)
– Process request sequentially
– Fair to all processes
– if there are many processes it performs like

random scheduling

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

Disk Scheduling Policies

● Priority
– Goal is not to optimize disk use but to

meet other objectives
– Short batch jobs may have higher

priority
– Provide good interactive response time

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

Disk Scheduling Policies

● Last-in, first-out
– Good for transaction processing

systems
● The device is given to the most recent

user so there should be little arm
movement

– Possibility of starvation since a job
may never regain the head of the line

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

Disk Scheduling Policies
● Shortest Service Time First

– Select the disk I/O request that requires the least
movement of the disk arm from its current
position

– Always choose the minimum Seek time
– Possibility of starvation

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

Disk Scheduling Policies

● SCAN (LOOK)
– no starvation
– Arm moves in one direction only, satisfying all

outstanding requests until it reaches the last
track in that direction

– Direction is reversed

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

Disk Scheduling Policies

● C-SCAN
– Restricts scanning to one direction only
– When the last track has been visited in one

direction, the arm is returned to the opposite
end of the disk and the scan begins again

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

Disk Scheduling Policies

● N-step-SCAN
– Segments the disk request queue into

subqueues of length N
– Subqueues are processed one at a

time, using SCAN
– New requests added to other queue

when queue is processed
● FSCAN

– Two queues
– One queue is empty for new requests

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

Disk Scheduling
Algorithms

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

RAID

● Redundant Array of Independent
Disks

● Set of physical disk drives viewed by
the operating system as a single
logical drive

● Data are distributed across the
physical drives of an array

● Redundant disk capacity is used to
store parity information

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

40

RAID 0 (non-redundant, striping)

● availability: lower than single disk

● large I/O: very good

● high request rate: very good

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

RAID 1 (mirrored)

● availability: high
● large I/O: very good for read
● high request rate: very good for read

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

RAID 2 (redundancy
through Hamming code)

● disks should be syncronized
● availability: high also for high bit error rate
● large I/O: best!!!
● high request rate: about twice single disk
● expensive!

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

RAID 3 (bit-interleaved parity)

● disks should be syncronized
● availability: high
● large I/O: best!!!
● high request rate: about twice single disk

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

RAID 4 (block-level parity)

● disks are independent
● availability: high
● P is a bottlenek for write
● large I/O: good, very bad for write
● high request rate: very good for read, very bad

for write

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

RAID 5 (block-level
distributed parity)

● disks are independent
● availability: high
● large I/O: very good, bad for write (no bottlenek)
● high request rate: very good for read, bad for

write

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

RAID 6 (dual redundancy)

● availability: highest
– two disks may fail without data loss

● large I/O: very good for read, bad for write
● high request rate: very good for read, very bad

for write

