
1

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

04
-2

0
05

Virtual Memory

the role of the operating system

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

2

resident set

● the resident set of a process at a given time
is the set of pages that are in main memory
at that time
– its content chages over time

– its size may change depending on the OS
policies

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

3

Fetch Policy

● Fetch Policy
– Determines when a page should be

brought into memory
– Demand paging only brings pages into

main memory when a reference is
made to a location on the page

● Many page faults when process first
started

– Prepaging brings in more pages than
needed

● More efficient to bring in pages that reside
contiguously on the disk

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

4

Placement Policy

● Determines where in real memory a
process piece (segment or page) is
to reside

● Important in a segmentation system
● Paging or combined paging with

segmentation hardware performs
address translation

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

5

Replacement Policy

● Replacement Policy
– Which page is replaced?
– Page removed should be the page

least likely to be referenced in the near
future

– Most policies predict the future
behavior on the basis of past behavior

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

6

Replacement Policy

● Frame Locking
– If frame is locked, it may not be

replaced
– Kernel of the operating system
– Control structures
– I/O buffers
– Associate a lock bit with each frame

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

7

Basic Replacement
Algorithms

● Optimal policy
– Selects for replacement that page for

which the time to the next reference is
the longest

– results in the fewest number of page
faults

– no other policy is better than this

– Impossible to implement
● it needs to have perfect knowledge of

future events

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

8

optimal policy example

● page address stream:
2 3 2 1 5 2 4 5 3 2 5 2

● 3 frames are available

1 is no more referenced

2 is referenced after 5 and 3

×
× ×

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

9

Basic Replacement
Algorithms

● Least Recently Used (LRU)
– Replaces the page that has not been

referenced for the longest time
– By the principle of locality, this should

be the page least likely to be
referenced in the near future

– Each page could be tagged with the
time of last reference. This would
require a great deal of overhead.

● timestamp update for each reference in
memory!

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

10

LRU policy example

×
×

×
×

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

11

Basic Replacement
Algorithms

● First-in, first-out (FIFO)
– Treats page frames allocated to a

process as a circular buffer (queue)
– Pages are removed in round-robin

style
– Simplest replacement policy to

implement
– Page that has been in memory the

longest is replaced
– These pages may be needed again

very soon

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

12

FIFO policy example

×
× ×

×

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

13

Basic Replacement
Algorithms

● Clock Policy (second chance)
– one additional for each page bit called a use

bit
– set use=1

● when a page is first loaded in memory
● each time a page is referenced

– when it is time to replace a page scan the
frames...

● the first frame encountered with use=0 is
replaced

● while scanning if a frame has use=1, set
use=0

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

14

clock policy example

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

15

clock policy example

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

16

clock policy example

×
×

×
×

×

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

17

comparison of replacement
algorithms

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

18

clock policy variation
● we prefer to replace frames that have not

been modified
– since they need not to be written back to disk

● two bits are used (updated by the hardware)
– use bit

– modified bit

● frames may be in four states
– not accessed recently, not modified
– not accessed recently, modified

– accessed recently, not modified
– accessed recently, modified pr

ef
er

en
ce

 in
cr

ea
se

s

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

19

clock policy variation

1 look for frames not accessed recently and
not modified (use=0, mod=0)

2 if unsuccessful, look for frames not accessed
recently and modified (use=0, mod=1)

● ... while setting use=0 as in regular clock.

3 if unsuccessful, go to step 1

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

20

clock policy variation

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

21

aging policy
(da Tannenbaum)

● for each age keeps an age “estimator”
– the less is the value the older is the page

● periodically sweep all pages...
– scan use bits and modify estimator for each

page, two possible alternatives:
● shift right (that is divide by two) all estimators and

insert the value of use bit as leftmost bit
● decrement all estimators for unused pages and

increment those belonging to used pages

– clear use bits

● evict pages starting from older ones
– lower estimator

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

22

aging policy
right shift

● R is the use bit

00010000

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

23

aging policy
● it is a form of LRU approximation
● ages are quantized in time

– many references between two sweeps are
counted once

● very old references are forgotten
– when an estimator reach zero it remains

unchanged

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

24

Page Buffering
● system always keeps a small amount of free

pages
● pages replaced are added to one of two lists

– Free page list, if page has not been modified

– Modified page list, otherwise

● pages of the free list are physically overwritten
only if the page is really re-assigned

● if the page is claimed again it may be given to
the process without any access to secondary
memory

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

25

Page Buffering

● when a modified page is written out it is
put into the free page list

● modified pages can be written out on
secondary memory in clusters reducing
the number of I/O

● page buffering has been adopted to
“correct” simple policies like FIFO

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

26

resident set management

● resident set size
– how many pages are in memory for each

process?

● replacement scope
– what is the set of pages that are considered for

replacement?

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

27

Resident Set Size (RSS)

● Fixed-allocation
– Gives a process a fixed number of

pages within which to execute
– When a page fault occurs, one of the

pages of that process must be
replaced

● Variable-allocation
– Number of pages allocated to a

process varies over the lifetime of the
process

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

28

Replacement Scope

a process A generated a page fault
– that is, a page of A must be loaded in memory

– it will take the place of another page, which one?

● local policy
– the page to be replaced is chosen among the

pages of A

● global policy
– the page to be replaced is chosen among all the

pages in memory regardless of the process they
belong to.

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

29

fixed allocation, global scope

● not possible

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

30

Fixed Allocation, Local
Scope

● Decide ahead of time the amount of
allocation to give a process

● If allocation is too small, there will be
 a high page fault rate

● If allocation is too large there will be
too few programs in main memory
– bad usage of main memory

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

31

Variable Allocation,
Global Scope

● Easiest to implement
● Adopted by many operating systems
● Operating system keeps list of free frames
● A free frame is added to resident set of a

process when a page fault occurs
● If no free frame, replaces one from

another process

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

32

Variable Allocation,
Local Scope

● When a new process is added, allocate a
number of page frames based on
application type, program request, or
other criteria

● When page fault occurs, select page from
among the resident set of the process
that suffers the fault

● Reevaluate allocation from time to time
– see “working set”

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

33

(memory) virtual time

● consider a sequence of memory references
generated by a process P
r(1), r(2),...

● r(i) is the page that contains the i-th address
referenced by P

● t=1,2,3,... is called (memory) virtual time for
P

it can be approximated by “process” virtual time
– memory references are uniformly distributed in

time

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

34

working set

● defined for a process at an instant (in virtual
time) t and with a parameter Δ (window)
– denoted by W (t, Δ)

● W (t, Δ) for a process P is the set of pages
referenced by P in the virtual time interval
[t – Δ + 1, t]
– the last Δ virtual time instants starting from t

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

35

working set properties

 the larger the window size, the larger the
working set.

upper bound for the size of W

N number of pages in the process image

W t , Δ1⊇W t , Δ

1∣W t , Δ∣min Δ , N

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

36

working set

Δ

|W (t, Δ)|

N

W
 =

 Δ
andamento al variare di Δ per t fissato t>>N

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

37

working set: esempio

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

38

working set: andamento tipico nel
tempo

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

39

our goal

● ideally we would like to have alaways the
working set in memory

● WS strategy
– monitor the WS of each process

– update the WS
● page faults add pages to the WS
● periodically remove pages of the resident set that are

not in the WS. Basically: LRU with variable resident
set size.

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

40

few
page
faults

few
page
faults

few
page
faults

Δ'<<Δ

few
page
faults

more
page
faults

even
more
page
faults

working set strategy: problems

● optimal Δ?
– larger Δ → less page faults and larger |W|

– compromise between number of page faults and
WS size!

– in any case the optimal value may vary

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

41

working set strategy:
implementation problems

● we need to maintain the history of the
reference for Δ
– more and more difficult as Δ increase

● it should be done in real-time
– keep a list of the memory reference in hw?

– count memory reference and mark pages with
the current value of the counter?

– in any case we need hw support

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

42

page fault frequency (PFF)

● page fault frequency
depends on the
resident set size

● monitor PFF instad
of W
– much easier

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

43

page fault frequency (PFF)

● if PFF is below a
threshold for P,
decrease RSS of P

● the whole system
will benefit

PFF threshold

RSS(P)

PFF(P)

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

44

page fault frequency (PFF)

● if PFF is above a
threshold for P,
increase RSS of P

● P will benefit

PFF threshold

RSS(P)

PFF(P)

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

45

PFF policy implementation

● maintain a counter t of the memory
references (it count virtual time)

● on each page fault update estimation of PFF
● keeping the time t

1
 of the last page fault PFF≈1/(t-t

1
)

● keeping a first order estimator

● decide action on estimated PFF

PFF now=α
1
t−t1

1−αPFF prev

α∈(0,1]

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

46

PFF policy implementation
● if PFF is above the PFF

threshold

– increse the RSS

● if PFF is below the PFF
threshold

– evict at least two pages from the resident set
● on to make space for the new one and one to reduce

the RSS

● in any case load in the page
● to avoid oscillations usually two distinct

thresholds are used: PFF
max

and PFF
min

– PFF
max

>PFF
min

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

47

PFF policy

● it may used with page buffering
● it performs poorly in transient periods

– RSS grows rapidly while changing from one
locality to another

– big RSS trigger process suspension

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

48

variable-interval sampling WS

● divide the (memory or process) virtual time in
intervals
– during each interval RSS can only increase

– at the end of each interval pages unused in the
interval are evicted and use bits cleared

– interval length x varies and decided for each
interval

● L maximum duration of an interval
● M minimum duration of an interval
● Q maximum number of page faults in an interval

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

49

variable-interval sampling WS

● as soon as x>L the interval is finished RSS
management is performed

● if the number of page faults is >Q
– if x<M wait till x=M

– if x>M RSS management is performed
(parameters should be chosen so that this is the
most frequent case)

 when page faults occour frequently RSS
management is performed frequently and
unused pages are quickly evicted

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

50

Cleaning Policy

● Demand cleaning
– A page is written out only when it has

been selected for replacement
● Precleaning

– Pages are written out in batches
before selction for replacement

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

51

Cleaning Policy

● Best approach uses page buffering
– Replaced pages are placed in two lists

● Modified and unmodified

– Pages in the modified list are
periodically written out in batches

– Pages in the unmodified list are either
reclaimed if referenced again or lost
when its frame is assigned to another
page

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

52

Load Control

● Desipte good design system may always
trash!

● Determines the number of processes that
will be resident in main memory

● Too few processes, many occasions
when all processes will be blocked and
much time will be spent in swapping

● Too many processes will lead to thrashing

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

53

Multiprogramming

trashing

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

54

Process Suspension

● Lowest priority process
● Faulting process

– This process does not have its working
set in main memory so it will be
blocked anyway

● Last process activated
– This process is least likely to have its

working set resident

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

55

Process Suspension

● Process with smallest resident set
– This process requires the least future

effort to reload
● Largest process

– Obtains the most free frames
● Process with the largest remaining

execution window

