Virtual Memory

control structures
and
hardware support



Hardware and Control
Structures

* Memory references are dynamically
translated into physical addresses at run
time

- A process may be swapped in and out of
main memory such that it occupies different

regions
* A process may be broken up into pieces

that do not need to located contiguously
IN main memory

* Not necessarily all pieces of a process

need to be loaded in main memory during
execution



Execution of a Program

* Operating system brings into main memory
a few pieces of the program

* Resident set - portion of process that is in
main memory

* An interrupt is generated when an address

IS needed that is not in main memory (page
fault)

* Operating system places the process in a

blocking state
- the process is waliting its page from disk

- this is equivalent to a blocking I/O request



Execution of a Program

* Piece of process that contains the
logical address is brought into main
memory

- Operating system issues a disk I/O
Read request

- Another process is dispatched to run
while the disk |/O takes place

— An interrupt is issued when disk 1/O
complete which causes the operating
system to place the affected process in
the Ready state



Advantages of
Breaking up a Process

* More processes may be maintained in
main memory

- Only load in some of the pieces of each
process

- With so many processes in main memory, it
Is very likely a process will be in the Ready
state at any particular time

* A process may be larger than all of main
memory



Thrashing

e Swapping out a piece of a process

just before that piece is needed
— if this happens frequently a lot of I/O is
needed

— at the extreme point all processes are
waiting for their pages from the disk

* The processor spends most of its
time swapping pieces rather than
executing user instructions



Principle of Locality

* Program and data references within
a process tend to cluster

* Only a few pieces of a process will
be needed over a short period of
time

* Possible to make intelligent guesses

about which pieces will be needed in
the future

* This suggests that virtual memory
may work efficiently



principle of
locality
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Support Needed for
Virtual Memory

* Hardware must support paging and
segmentation

* Operating system must be able to
manage the movement of pages
and/or segments between
secondary memory and main
memory



paging and virtual memory

* Each process has its own page
table

 Each page table entry contains the
frame number of the corresponding
page in main memory

* An additional bit is needed to
indicate whether the page is in main
memory or not
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Modify Bit in
Page Table

* Modify bit is needed to indicate if the
page has been altered since it was

last loaded into main memory

- If no change has been made, the page
does not have to be written to the disk
when it needs to be swapped out
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Paging
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very big page tables

 what if a process use a limited number of
small parts of the page table”?

— other parts may be not used at the moment or not
used at all

- a lot of memory wasted for unused page table
entries

* page tables should treated largely as part of
the process image

|

* hierarchical page tables, inverted page tables
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4-kbyte root
page table

4-Mbyte user
page table

4- Ghyte user
address space

Two-Level Scheme for
32-bit Address (pentium like)
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Figure 8.4 A Two-Level Hierarchical Page Table

15



address translation in a two-level schema

Frame #

Offset

4-kbyte page
table (contains
1024 PTEs)

]

[
Virtual Address '

]

10 bits | 10 bits | 12 bits |y
[]
]
B
]
i Rool page

table pir
[
[
]
]
[]
I v
I_' +
]
] >
]
[
i Root page table
1 (contains 1024 PTEs)
[]
[]
Program ' Paging Mechanism

]

&

Page
Frame

Main Memory



Inverted Page Table

one table and one entry for each frame
regardless of the number of processes

Page number portion of a virtual address
IS mapped into a hash value

Hash value points to inverted page table
collisions are solved by chaining

Used on PowerPC, UltraSPARC, and IA-
64 architecture
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Translation Lookaside
Buffer

* Each virtual memory reference can
cause two physical memory
accesses

- One to fetch the page table entry
- One to read/write the data

* To overcome this problem a high-
speed cache is set up for page
table entries

- Called a Translation Lookaside Buffer
(TLB)
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Translation Lookaside
Buffer

* Contains page table entries that
have been most recently used

* it performs an associative mapping
between page numbers and page
table entries
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Translation Lookaside
Buffer

* Given a virtual address, processor
examines the TLB

* |[f page table entry is present (TLB
hit), the frame number is retrieved
and the real address is formed

* |f page table entry is not found in the
TLB (TLB miss), the page number is
used to index the process page
table
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Translation Lookaside
Buffer

* if page is already in main memory
the TLB is updated to include the
new page entry

- If not in main memory a page fault is
iIssued

- OS is called
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address translation with TLB
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direct vs. associative mapping
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TLB and regular cache
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Page Size

Smaller page size, less amount of internal
fragmentation

Smaller page size, more pages required
per process

More pages per process means larger
page tables

Larger page tables means large portion of
page tables in virtual memory

Secondary memory is designed to
efficiently transfer large blocks of data so
a large page size is better
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Page Size

 Small page size, large number of
pages will be found in main memory

* As time goes on during execution,
the pages in memory will all contain
portions of the process near recent
references. Page faults low.

* |ncreased page size causes pages
to contain locations further from any
recent reference. Page faults rise.
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Page Fault Rate

typical paging behavior

A

anomalous

typical/

|

Page Fault Rate

(a) Page Size

P W
(h) Number of Page Frames Allocated

P = size of entire process

W = working set size

N = total number of pages in process

Figure 8.11 Typical Paging Behavior of a Program
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Example Page Sizes

Computer

Page Size

Atlas

Honeywell-Multics

512 48-bat words
1024 36-bit word

IBM 370/XA and 3T0/ESA 4 Kbvtes

VAX family 512 bytes

IBM AS/400 512 bytes

DEC Alpha 8 Kbytes

MIPS 4 kbves to 16 Mbytes
UltraSPARC & Kbytes to 4 Mbytes
Pentium 4 Kbvtes or 4 Mbytes
PowerPc 4 Kbvtes

Itanium 4 Kbvtes to 2536 Mbvytes
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Segmentation

* Segments may have be unequal size

* segment size may dynamically increase
- may simplify handling of growing data
structures

* Allows modules of programs to be altered
and recompiled independently

* makes easy to share data among
processes

* implements protection mechanisms

31



Segment Tables

* one entry for each segment of the process

* each entry contains
- base address for the segment in main
memory

- the length of the segment

* A bitis needed to determine if segment is
already in main memory

* Another bit is needed to determine if the
segment has been modified since it was
loaded in main memory
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Segment Table Entries

Virtual Address
Segment Number
sSegment Table Entry

Pjvother Control By Length | SegmentBase

(b} Segmentation only
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address translation for segmentation
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Combined Paging and
Segmentation

* Paging is transparent to the
programmer

e Segmentation is visible to the
programmer

* Each segment is broken into fixed-
size pages
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Combined Segmentation
and Paging

Virtual Address

Segment Number

segment Table Entry

Comtrol Bits Length Sepment Base

Page Table Entry

Plh¥0ther Contrel Bi Frame Number P= present bit
M = Modified bit

(c) Combined segmentation and paging
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address translation for segmentation/paging
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