
1

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
.

2
0

04
-2

0
05

Virtual Memory

control structures
and

hardware support

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

2

Hardware and Control
Structures

● Memory references are dynamically
translated into physical addresses at run
time
– A process may be swapped in and out of

main memory such that it occupies different
regions

● A process may be broken up into pieces
that do not need to located contiguously
in main memory

● Not necessarily all pieces of a process
need to be loaded in main memory during
execution

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

3

Execution of a Program

● Operating system brings into main memory
a few pieces of the program

● Resident set - portion of process that is in
main memory

● An interrupt is generated when an address
is needed that is not in main memory (page
fault)

● Operating system places the process in a
blocking state
– the process is waiting its page from disk
– this is equivalent to a blocking I/O request

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

4

Execution of a Program

● Piece of process that contains the
logical address is brought into main
memory
– Operating system issues a disk I/O

Read request
– Another process is dispatched to run

while the disk I/O takes place
– An interrupt is issued when disk I/O

complete which causes the operating
system to place the affected process in
the Ready state

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

5

Advantages of
Breaking up a Process

● More processes may be maintained in
main memory
– Only load in some of the pieces of each

process
– With so many processes in main memory, it

is very likely a process will be in the Ready
state at any particular time

● A process may be larger than all of main
memory

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

6

Thrashing

● Swapping out a piece of a process
just before that piece is needed
– if this happens frequently a lot of I/O is

needed

– at the extreme point all processes are
waiting for their pages from the disk

● The processor spends most of its
time swapping pieces rather than
executing user instructions

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

7

Principle of Locality

● Program and data references within
a process tend to cluster

● Only a few pieces of a process will
be needed over a short period of
time

● Possible to make intelligent guesses
about which pieces will be needed in
the future

● This suggests that virtual memory
may work efficiently

principle of
locality

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

9

Support Needed for
Virtual Memory

● Hardware must support paging and
segmentation

● Operating system must be able to
manage the movement of pages
and/or segments between
secondary memory and main
memory

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

10

paging and virtual memory

● Each process has its own page
table

● Each page table entry contains the
frame number of the corresponding
page in main memory

● An additional bit is needed to
indicate whether the page is in main
memory or not

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

11

Modify Bit in
Page Table

● Modify bit is needed to indicate if the
page has been altered since it was
last loaded into main memory
– If no change has been made, the page

does not have to be written to the disk
when it needs to be swapped out

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

12

Paging

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

13

address translation for paging

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

14

very big page tables

● what if a process use a limited number of
small parts of the page table?
– other parts may be not used at the moment or not

used at all

– a lot of memory wasted for unused page table
entries

● page tables should treated largely as part of
the process image

● hierarchical page tables, inverted page tables

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

15

Two-Level Scheme for
32-bit Address (pentium like)

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

16

address translation in a two-level schema

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

17

Inverted Page Table

● one table and one entry for each frame
regardless of the number of processes

● Page number portion of a virtual address
is mapped into a hash value

● Hash value points to inverted page table
● collisions are solved by chaining
● Used on PowerPC, UltraSPARC, and IA-

64 architecture

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

18

inverted page table

 -

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

19

Translation Lookaside
Buffer

● Each virtual memory reference can
cause two physical memory
accesses
– One to fetch the page table entry
– One to read/write the data

● To overcome this problem a high-
speed cache is set up for page
table entries
– Called a Translation Lookaside Buffer

(TLB)

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

20

Translation Lookaside
Buffer

● Contains page table entries that
have been most recently used

● it performs an associative mapping
between page numbers and page
table entries

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

21

Translation Lookaside
Buffer

● Given a virtual address, processor
examines the TLB

● If page table entry is present (TLB
hit), the frame number is retrieved
and the real address is formed

● If page table entry is not found in the
TLB (TLB miss), the page number is
used to index the process page
table

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

22

Translation Lookaside
Buffer

● if page is already in main memory
the TLB is updated to include the
new page entry
– If not in main memory a page fault is

issued
– OS is called

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

23

address translation with TLB

lookup
algorithm

for
virutal

memory
paging

with
TLB

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

25

direct vs. associative mapping

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

26

TLB and regular cache

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

27

Page Size

● Smaller page size, less amount of internal
fragmentation

● Smaller page size, more pages required
per process

● More pages per process means larger
page tables

● Larger page tables means large portion of
page tables in virtual memory

● Secondary memory is designed to
efficiently transfer large blocks of data so
a large page size is better

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

28

Page Size

● Small page size, large number of
pages will be found in main memory

● As time goes on during execution,
the pages in memory will all contain
portions of the process near recent
references. Page faults low.

● Increased page size causes pages
to contain locations further from any
recent reference. Page faults rise.

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

29

typical paging behavior

typical

anomalous

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

30

Example Page Sizes

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

31

Segmentation
● Segments may have be unequal size
● segment size may dynamically increase

– may simplify handling of growing data
structures

● Allows modules of programs to be altered
and recompiled independently

● makes easy to share data among
processes

● implements protection mechanisms

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

32

Segment Tables

● one entry for each segment of the process
● each entry contains

– base address for the segment in main
memory

– the length of the segment

● A bit is needed to determine if segment is
already in main memory

● Another bit is needed to determine if the
segment has been modified since it was
loaded in main memory

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

33

Segment Table Entries

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

34

address translation for segmentation

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

35

Combined Paging and
Segmentation

● Paging is transparent to the
programmer

● Segmentation is visible to the
programmer

● Each segment is broken into fixed-
size pages

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

36

Combined Segmentation
and Paging

©
 2

0
0

5
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i a

.a
. 2

0
0

4
-2

0
0

5

37

address translation for segmentation/paging
systems

