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Virtual Memory
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memory: the point of view 
of the process

● structural
– one process address space divided in “legal” 

memory regions
● for code (executable and libraries) and data (heap and 

stack)
● rights (rwx)
● regions can be shared (libraries, IPC, threads, fork - copy on write)

● behavioral
– access to memory using machine language

– regions: creation and change (mmap, brk, fork)

– sharing (libraries, IPC, threads, fork - copy on write)

not on 
the book
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process address space in linux
● many regions:

– kernel (forbidden)

– stack (rw)

– code (rx)

– init data (rw)

– heap (rw, can grow)

– many other
● shared libraries
● memory mapped files
● etc.

● cat /proc/pid/maps 0x0

0xffffffff

0x8048000 code
init. data

kernel

0xc000000

stack

sh. lib.0xb800000

sh. lib.
mmap

mmap

heap

not on 
the book
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advantages of virtual memory 
● a process may be larger than all of main 

memory
● more processes may be maintained in main 

memory
– only load in some of the pieces of each process

● with so many processes in main memory
– in interactive systems users may run many 

applications, interfaces, etc.

– it is very likely a process will be in the Ready 
state at any particular time

● Resident set - portion of process that is in 
main memory at a certain instant

not on 
the book
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virtual memory hw support

● hardware support 
– typically “paging”

● memory references are dynamically 
translated into physical addresses at run time 
(by the hardware)

● no relocation problems
● support for pages that are not in memory 

– “page not present” flag in page table entry

– special interrupt to manage the situation
● page fault
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page fault
● page fault - interrupt generated when a 

process access a memory address that is 
not in main memory

● the operating system places the process in a 
blocking state
– the process is waiting its page from disk 
– this is equivalent to a blocking I/O request

– the process that generated the page fault is 
placed in blocked state

– another process is scheduled/dispatched
– an interrupt is issued when disk I/O complete 

which causes the operating system to place the 
affected process in the Ready state

not on 
the book
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page faultnot on 
the book

● major page fault
– when input from disk is needed

● minor page fault
– when input from disk is not needed

– eg.
● new free memory allocation (syscall brk, mmap)

– memory allocation create a region, does not allocate a frame!
● for same reason the page is not in the resident set of 

the process but it is in a frame in main memory
– page buffering (we will see it)
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no miracles: thrashing

● when physical memory is too short with 
respect of processes memory demand 

● swapping out a piece of a process just 
before that piece is needed
– if this happens frequently a lot of I/O is needed

– at the extreme point all processes are waiting 
for their pages from the disk

● the processor has nothing to execute
● the disk is overbusy transferring pages
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fetch policy
● determines when a page should be brought 

into memory
● prepaging brings in more pages than 

needed
– if “prediction” is good, pages are already in 

memory when they are needed
– rarely used

● demand paging only brings pages into 
main memory when really needed
– save memory
– many page faults during process start up
– often used
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Placement Policy

● Determines where, in real memory, a 
process piece (segment or page) should 
reside

● Important in a segmentation-only system
– see memory allocation approaches and external 

fragmentation

● Paging: MMU hardware performs address 
translation
– placement policy is irrelevant

– in practice hw may impose some constraint
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eviction policy

● the strategy used by the OS to choose pages 
to take out of the RS of the processes

● a good page to evict will not be accessed in 
the near future

● the eviction strategy is the way the OS uses 
to predict the future

● long research history
– optimal, lru, fifo, clock, aging belady anomaly, 

competitive on-line algorithms, etc....

– we will see many eviction strategies

not on 
the book
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eviction policy

● a good eviction strategy greatly speed up 
whole system

● WARNING:
– trashing is still there!

– being smart allows to run more processes before 
system goes thrashing

– anyway there always be a limit after that system 
goes thrashing

● even for OPTimal eviction policy (see after)

not on 
the book
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cleaning policy

● before eviction of a modified (dirty) page this 
has to be written to disk

● demand cleaning
– A page is written out only when it has been 

selected for replacement
● precleaning

– Pages are written out in batches before 
selection for replacement

– e.g. when disk is idle
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cleaning policy and page buffering

● system always keeps a small amount of free 
frames ready for re-assignment

● frames of evicted pages are added to one of two 
lists
– free-clean frame list, if page has not been modified

– free-dirty frame list, otherwise

● frames in the clean are ready-for re-assignment

● frames in the dirty list are periodically written out in 
batches and put into the clean list
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● suppose a page P is still contained in a 
free-frame (either clean or dirty)

– nobody has overwritten it, yet

● P can be claimed again by its process
● P can be given to the process without any 

access to secondary memory
● we have a (minor) page fault but with very 

small overhead
– no disk reading

– just update data structures in main memory
● page buffer → RS of the process
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page buffering as eviction 
policys

● page buffering “corrects” simple eviction 
policies implementing a sort of LRU 
eviction strategy

– see after
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i Load Control

● Desipte good design (e.g. good eviction 
policy) system may always trash!

● Determines the number of processes that 
will be resident in main memory

● Too many processes will lead to thrashing
● Too few processes, cpu under utilized
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trashing
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Process Suspension

● Lowest priority process
● Faulting process

– This process does not have its working set in 
main memory so it will be blocked anyway

● Last process activated
– This process is least likely to have its working 

set resident
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virtual memory vs. disk caching
● common objective

– keep in main memory only data and/or programs 
that are really useful (frequently accessed)

● different action domain
– virtual memory: processes, pages, segments

– disk caching: files
ram disk

→ swap area

disk cache ←

virtual 
memory

rarely used 
processes, 
pages or 
segments

disk 
caching

frequently used 
parts of files 

not on 
the book
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virtual memory vs. disk caching
● disk cache needs to take mostly the same 

kinds of decisions as virtual memory
– fetch, placement, eviction, cleaning

– some files are used by more processes as some 
pages are shared by more processes

– file parts are brought into memory “on demand” 
as in demand paging

● common solution: memory-mapped files
● it is a new i/o primitive

– reads and writes are handled by ad-hoc caching

not on 
the book
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memory-mapped files

● a process can ask to see a part of a file as 
memory
– unix syscall mmap(void *start_hint, size_t length, 

int protection, int flags, int fd, off_t offset)

● no input during the syscall, just creation of a 
new memory region

● page fault brings in memory what is needed
● cleaning write on disk what is changed
● reads and writes are not performed as syscall 

but as processor memory access: a lot faster!

not on 
the book
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memory-mapped files

● several kinds
– read-only, shared, private, anonymous (mapped 

on swap area)

● typical usage
– executable: demand paging, shared libraries 

● mmap called by dynamic linker which is the only think 
is loaded by execve syscall, it then mmap's the 
executable and all shared libraries change them a bit 
(private mmap)

– efficient i/o based applications: e.g. DBMS 

not on 
the book
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memory-mapped files

● drawbacks
– need to read the page before writing

– real write is preferomed on "cleaning" or 
unmapping of the file 

● unsuitable when user should have control of when 
something is written (eg. text editors, save...)

– file size change unsupported

not on 
the book
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an example

pizzonia@pisolo:~$ cat /proc/self/maps

08048000-0804f000 r-xp 00000000 08:03 6750220    /bin/cat

0804f000-08050000 rw-p 00006000 08:03 6750220    /bin/cat

08050000-08071000 rw-p 08050000 00:00 0          [heap]

b7dec000-b7ded000 rw-p b7dec000 00:00 0

b7ded000-b7f36000 r-xp 00000000 08:03 11796591   /lib/tls/i686/cmov/libc-2.7.so

b7f36000-b7f37000 r--p 00149000 08:03 11796591   /lib/tls/i686/cmov/libc-2.7.so

b7f37000-b7f39000 rw-p 0014a000 08:03 11796591   /lib/tls/i686/cmov/libc-2.7.so

b7f39000-b7f3c000 rw-p b7f39000 00:00 0

b7f55000-b7f57000 rw-p b7f55000 00:00 0

b7f57000-b7f58000 r-xp b7f57000 00:00 0          [vdso]

b7f58000-b7f72000 r-xp 00000000 08:03 7061540    /lib/ld-2.7.so

b7f72000-b7f74000 rw-p 00019000 08:03 7061540    /lib/ld-2.7.so

bfb78000-bfb8d000 rw-p bffeb000 00:00 0          [stack]

protection filename 
mapped

inode 
number

anonymous 
mapping

device
offset in 
the file
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hw support for
virtual memory
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Hw Support Needed for
Virtual Memory

● Hardware must support paging and/or 
segmentation...
– ...plus indication of “page not resident”

● Operating system must be able to manage 
the movement of pages and/or segments 
between secondary memory and main 
memory
– and decide which is the “best page” to evict

– we will see that we need a few additional “bits” 
from the hw 
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page table for virtual memory

● Each process has its own page table
● Each page table entry contains the frame 

number of the corresponding page in main 
memory

● An additional bit is needed to indicate 
whether the page is in main memory or not

● An additional bit is needed to indicate 
whethere the page has been altered since it 
was last loaded into main memory
– no change → the frame does not have to be 

written to disk when page is evicted 
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address translation for paging
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very big page tables

● what if a process use a limited number of 
small parts of the page table?
– other parts may be not used at the moment or not 

used at all

– a lot of memory wasted for unused page table 
entries

● page tables should be treated largely as part 
of the process image

● hierarchical page tables, inverted page tables
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Two-Level Scheme for 
32-bit Address (pentium like)
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address translation in a two-level schema
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Inverted Page Table (IPT)
● page number portion of a virtual address 

and PID are mapped into a hash value
● the hash value points into the page table 

entry
– entry contains info to check validity (pid and 

page#) since it may not be related to the 
process due to collision

● collisions are solved by chaining

– entry contains frame number

– as many entries as the number of frames

● used by PowerPC, UltraSPARC, and Intel 
Itanium architecture

not on 
the book
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inverted page table

 - 

Frame #

h

f1in general f≠h
h

not on 
the book

PID

f2
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updating the IPT (OS)
– the frame h

1
 is computed by hashing, read the table 

entry for h
1

– if h
1
 is free

● update the entry h
1 
with pid/pagenumber/framenumber 

and set chain=0

– else
● choose a new entry h

2
 (e.g. by applying hashing again)

● if h
2
 is free, update the entry of h

2 
with 

pid/pagenumber/framenumber, set chain=0 and set 
chain of the entry h

1 
to point to the entry h

2

– if h
2
 is occupied, iterate again possibly producing 

longer chains

not on 
the book
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reading the IPT (CPU)

● compute the hash h
1

● if the entry for h
1 
contains the right pid and 

page number, read the frame number from 
this entry and perform memory access 

● otherwise follow the chain until find the right 
pid/pagenumber

● if chain end is reached, the page is not in 
memory
– page fault or illegal memory access

not on 
the book
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IPT in real architectures

● in real architectures the IPT does not have a 
frame# field

● the result of the hash function is the frame 
number!

● this constrains OSes to select the frame 
chosen by the hash function for hosting the 
page... 
– ...or to introduce a chain

not on 
the book
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IPT in real architectures

 - 

f

not on 
the book

PID
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IPT in real architectures
● IPT are used when virtual address space is 

really huge 
● this happens in OS that...

– ... run on 64 bits hw architecture

– ... adopt a “single address space” model

not on 
the book
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SAS vs. MAS

● linux windows etc. are multiple address  
space OSes (MAS-OS)
– each process occupies a distinct address spaces

● in single address space OSes (SAS-OS) 
processes occupies distinct portions of the  
same virtual address space 
– no page table switching is needed when 

switching process (but rights changes)

– sharing of memory is easier

– huge virtual address space is needed to host all 
processes!

not on 
the book
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Translation Lookaside Buffer

● Each virtual memory reference can cause 
two (or more) physical memory accesses
– One to fetch the page table entry
– One to read/write the data

● To overcome this problem a high-speed 
cache is set up for page table entries
– Called a Translation Lookaside Buffer (TLB)
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Translation Lookaside Buffer

● Contains page table entries that have been 
most recently used

● it performs an associative mapping 
between page numbers and page table 
entries
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direct vs. associative mapping
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Translation Lookaside Buffer

● Given a virtual address, processor examines 
the TLB

● If page table entry is present (TLB hit), the 
frame number is retrieved and the real 
address is formed

● If page table entry is not found in the TLB 
(TLB miss), the page number is used to 
index the process page table
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Translation Lookaside Buffer

● if page is already in main memory the TLB is 
updated to include the new page entry
– If not in main memory a page fault is issued and 

OS is called

● TLB should be reset on process switch 
– it caches entries of a certain page table.

– if the page table is changed (process 
switch)TLB content became useless 
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address translation with TLB
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lookup 
algorithm

for
virtual 

memory 
paging

with
TLB
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TLB and memory cache
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Page Size

● Smaller page size, less amount of internal 
fragmentation

● Smaller page size, more pages required per 
process

● More pages per process means larger page tables
● Larger page tables means large portion of page 

tables in virtual memory
● Secondary memory is designed to efficiently  

transfer large blocks of data so a large page size is 
better



51

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

, 
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i 

Page Size

● Small page size, large number of pages will 
be found in main memory

● As time goes on during execution, the pages 
in memory will all contain portions of the 
process near recent references.  Page faults 
low.

● Increased page size causes pages to 
contain locations further from any recent 
reference.  Page faults rise.
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typical paging behavior

  

typical

anomalous
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● Segments may have be unequal size
● segment size may dynamically increase

– may simplify handling of growing data 
structures

● Allows modules of programs to be altered 
and recompiled independently

● makes easy to share data among 
processes

● implements protection mechanisms
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● one entry for each segment of the process
● each entry contains 

– base address for the segment in main 
memory

– the length of the segment

● A bit is needed to determine if segment is 
already in main memory

● Another bit is needed to determine if the 
segment has been modified since it was 
loaded in main memory
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address translation for segmentation
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● segments are usually very big
● impractical to use with virtual memory
● obsolete

– segments are usually divided into pages
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Combined Paging and 
Segmentation

● Paging is transparent to the programmer
● Segmentation is visible to the programmer
● Each segment is broken into fixed-size 

pages
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Combined Segmentation 
and Paging
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address translation for segmentation/paging 
systems
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rss management and 
eviction policies
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rss management

rss allocation

eviction
scope

fixed variable

local bad usage of
main
memory

● new process: allocate a number of page frames
based on application type, program request, or
other criteria

● page fault: evict a page in the resident set of the
process that caused the fault

● Reevaluate allocation from time to time (see
working set)

global impossible ● Easiest to implement

● Adopted by many operating systems

● Operating system keeps list of free frames

● A free frame is added to resident set of a process
when a page fault occurs

● If no free frame, evict one page from any process
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locality principle

● program and data references within a 
process tend to cluster
– in time and space

● only a few pieces of the process address 
space are needed over a short period of 
time

● the behavior of a process in the imminent 
future is likely to be the same as in the 
recent past

● this suggests that virtual memory work 
efficiently in all practical cases
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principle of 
locality



66

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

, 
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i 

Replacement Policy

● Replacement Policy
– Which page is evicted?
– Page removed should be the page least likely to 

be referenced in the near future
– Most policies predict the future behavior on 

the basis of the past behavior
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Replacement Policy

● Frame Locking
– If frame is locked, it may not be replaced
– Kernel of the operating system
– Control structures
– I/O buffers
– Associate a lock bit with each frame
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pager or swapper

● the part of the kernel that manage the RS of 
the processes is called pager or swapper.

● it implements the replacement policy
– page replacement is the most critical problem to 

solve for virtual memory efficiency/efficacy
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Basic Replacement 
Algorithms/Policies

● Optimal policy
– Selects for replacement that page for which the 

time to the next reference is the longest
– results in the fewest number of page faults

– no other policy is better than this

– Impossible to implement
● it needs to have perfect knowledge of future events!!!
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optimal policy example

● page references stream:
2 3 2 1 5 2 4 5 3 2 5 2

● 3 frames are available

1 is no more referenced

2 is referenced after 5 and 3

×
× ×

FFFF
FF
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Basic Replacement 
Algorithms/Policies

● Least Recently Used (LRU)
– Replaces the page that has not been referenced 

for the longest time
– By the principle of locality, this should be the 

page least likely to be referenced in the near 
future

– Each page is tagged with the time of last 
reference.  This would require a great deal of 
overhead.

● timestamp update for each reference in memory!
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LRU policy example

×
×

×
×

FFFF
FF
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Basic Replacement 
Algorithms/Policies

● First-in, first-out (FIFO)
– Treats page frames allocated to a process as a 

circular buffer (queue)
– Pages are removed in round-robin style
– Simplest replacement policy to implement
– Page that has been in memory the longest is 

replaced
– These pages may be needed again very soon
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FIFO policy example

×
×

×
×

FFFF FF
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Basic Replacement 
Algorithms/Policies

● Clock Policy (second chance)
– one additional for each page bit called a use 

bit
– set use=1

● when a page is first loaded in memory
● each time a page is referenced

– when it is time to replace a page scan the 
frames...

● the first frame encountered with use=0 is 
replaced

● while scanning if a frame has use=1, set 
use=0
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clock policy example
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clock policy example
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clock policy example

×
×

×
×

×
FFFF

FF
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comparison of replacement 
algorithms
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CLOCK approximates LRU

● for each instance of CLOCK consider 2 sets 
– A: recently used pages (pages with use=1)

– B: not recently used pages (pages with use=0)

● each time clock arm is moved a page is 
demoted from A to B 
– which one is quite arbitrary, depends on the 

position of the arm

● a page is promoted from B to A when it is 
accessed

not on 
the book
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CLOCK with “modified” bit
● we prefer to replace frames that have not 

been modified 
– since they need not to be written back to disk

● two bits are used (updated by the hardware)
– use bit

– modified bit

● frames may be in four states
– not accessed recently, not modified

– not accessed recently, modified

– accessed recently, not modified

– accessed recently, modified pr
ef

er
en

ce
 in

cr
ea

se
s
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CLOCK with “modified” bit

1 look for frames not accessed recently and 
not modified (use=0, mod=0)

2 if unsuccessful, look for frames not accessed 
recently and modified (use=0, mod=1)

● ... while setting use=0 as in regular clock.

3 if unsuccessful, go to step 1
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CLOCK with “modified” bit
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aging policy
(from Tannenbaum)

● for each age keeps an age “estimator”
– the less is the value the older is the page

● it periodically sweeps all pages...
– scans use bits and modifies estimator for each page

● example: for page p shift right (that is divide by two) and 
insert the value of use bit for p as leftmost bit

– it records the situation of the use bits for the last (e.g. 8) sweeps
● theoretically, more complex extimators may be used

– clear all use bits to record page usage for the next 
sweep

● evict pages starting from older ones 
– that is, those that have a lower estimator

not on 
the book
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aging policy
 version with right shift estimator

00010000

not on 
the book value of use 

bits for each 
page at the 
sweep instant

sweep sweep sweep sweep

0 5 0 5 0 5 0 5 0 5

“oldest” pages
at a certain
instant

time
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estimator initialization

● when a page is loaded from the disk what is 
its estimator?
– 00000000

– 00000001

– 10000000

– 11111111

not on 
the book
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estimator initialization

● resonably this page should remain in memory 
since it has been accessed right now

● estimator should indicate a havily accessed 
page (e.g. 11111111)

not on 
the book
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aging approximates LRU
● ages are quantized in time 

– many references between two sweeps are 
counted once

– aging policy is much less precise than LRU

● very old references are forgotten
– when an estimator reach zero it remains 

unchanged

– impossible to discriminate among pages that 
were not referenced for very long time

● LRU always maintains all the information it needs

not on 
the book
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working set
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(memory) virtual time

● consider a sequence of memory references 
generated by a process P
r(1), r(2),...

● r(i) is the page that contains the i-th address 
referenced by P

● t=1,2,3,... is called (memory) virtual time for 
P

it can be approximated by “process” virtual time 
– memory references are uniformly distributed in 

time
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working set

● defined for a process at a certain instant (in 
virtual time) t and with a parameter Δ 
(window)
– denoted by W ( t, Δ )

● W ( t, Δ ) for a process P is the set of pages 
referenced by P in the virtual time interval 
[ t – Δ + 1, t ] 
– the last Δ virtual time instants starting from t
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working set properties

   the larger the window size, the larger the 
working set.

upper bound for the size of W

N number of pages in the process image

W t , Δ1⊇W t , Δ

1∣W t , Δ∣minΔ , N 
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working set

Δ

|W ( t, Δ )|

N

W
 =

 Δ
● values of |W ( t, Δ )| varying Δ for 

t fixed and t>>N
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working set: esempio
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working set: andamento tipico nel 
tempo
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our goal

● ideally we would like to have always the 
working set of each process in memory 
(RS=WS, for a fixed Δ )

● WS (theoretical) strategy
– monitor the WS of each process

– update the RS according to the WS 
● page faults add pages to WS (and to RS)
● periodically remove pages of the resident set that are 

not in the WS. In other words, LRU with variable 
resident set size.
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few 
page 
faults

few 
page 
faults

few 
page 
faults

Δ'<<Δ

few 
page 
faults

more 
page 
faults

even 
more 
page 
faults

working set strategy: problems

● optimal Δ? 
– larger Δ → less page faults and larger |W|

– trade-off between number of page faults and WS 
size!

– in any case the optimal value may depend on time
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working set strategy: 
implementation problems

● we need to maintain the history of the 
reference for Δ 
– more and more difficult as Δ increase

● it should be done in real-time
– keep a list of the memory reference in hw?

– count memory reference and mark pages with 
the current value of the counter?

– in any case we need hw support
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WS strategy approximation

● consider the frequency of page faults for a 
process (PFF)

● if the RS size of the process is larger than the 
WS size, PFF is low

● if the RS size of the process is smaller than 
the WS size, PFF is high

● we can use PFF to estimate the relationship 
between RS size and WS size



100

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

, 
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i 

page fault frequency (PFF)

● if PFF is below a 
threshold for P, 
decrease RSS of P

● the whole system 
will benefit

PFF threshold

RSS(P)

PFF(P)
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page fault frequency (PFF)

● if PFF is above a 
threshold for P, 
increase RSS of P

● P will benefit

PFF threshold

RSS(P)

PFF(P)
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PFF policy implementation

● maintain a counter t of the memory 
references (memory virtual time can be 
approximated with real time)

● on each page fault update estimation of PFF 
● keeping the time t

1
 of the last page fault PFF≈1/(t-t

1
)

● keeping a first order estimator

● decide action on estimated PFF

PFF now=α
1
t−t 1

1−α PFF prev

α∈( 0,1 ]

not on 
the book
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PFF policy implementation
● if PFF is above the PFF

threshold
 

– increse the RSS

● if PFF is below the PFF
threshold

– evict at least two pages from the resident set
● one to make space for the new one and one to reduce 

the RSS

● in any case load in the page
● to avoid oscillations usually two distinct 

thresholds are used: PFF
max 

and PFF
min

– PFF
max

>PFF
min
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PFF policy

● it may be used with page buffering
● it performs poorly in transient periods

– RSS grows rapidly while changing from one 
locality to another
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