
1

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

Virtual Memory

2

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

memory: the point of view
of the process

● structural
– one process address space divided in “legal”

memory regions
● for code (executable and libraries) and data (heap and

stack)
● rights (rwx)
● regions can be shared (libraries, IPC, threads, fork - copy on write)

● behavioral
– access to memory using machine language

– regions: creation and change (mmap, brk, fork)

– sharing (libraries, IPC, threads, fork - copy on write)

not on
the book

3

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

process address space in linux
● many regions:

– kernel (forbidden)

– stack (rw)

– code (rx)

– init data (rw)

– heap (rw, can grow)

– many other
● shared libraries
● memory mapped files
● etc.

● cat /proc/pid/maps 0x0

0xffffffff

0x8048000 code
init. data

kernel

0xc000000

stack

sh. lib.0xb800000

sh. lib.
mmap

mmap

heap

not on
the book

4

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

advantages of virtual memory
● a process may be larger than all of main

memory
● more processes may be maintained in main

memory
– only load in some of the pieces of each process

● with so many processes in main memory
– in interactive systems users may run many

applications, interfaces, etc.

– it is very likely a process will be in the Ready
state at any particular time

● Resident set - portion of process that is in
main memory at a certain instant

not on
the book

5

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

virtual memory hw support

● hardware support
– typically “paging”

● memory references are dynamically
translated into physical addresses at run time
(by the hardware)

● no relocation problems
● support for pages that are not in memory

– “page not present” flag in page table entry

– special interrupt to manage the situation
● page fault

6

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

page fault
● page fault - interrupt generated when a

process access a memory address that is
not in main memory

● the operating system places the process in a
blocking state
– the process is waiting its page from disk
– this is equivalent to a blocking I/O request

– the process that generated the page fault is
placed in blocked state

– another process is scheduled/dispatched
– an interrupt is issued when disk I/O complete

which causes the operating system to place the
affected process in the Ready state

not on
the book

7

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

page faultnot on
the book

● major page fault
– when input from disk is needed

● minor page fault
– when input from disk is not needed

– eg.
● new free memory allocation (syscall brk, mmap)

– memory allocation create a region, does not allocate a frame!
● for same reason the page is not in the resident set of

the process but it is in a frame in main memory
– page buffering (we will see it)

8

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

no miracles: thrashing

● when physical memory is too short with
respect of processes memory demand

● swapping out a piece of a process just
before that piece is needed
– if this happens frequently a lot of I/O is needed

– at the extreme point all processes are waiting
for their pages from the disk

● the processor has nothing to execute
● the disk is overbusy transferring pages

9

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

fetch policy
● determines when a page should be brought

into memory
● prepaging brings in more pages than

needed
– if “prediction” is good, pages are already in

memory when they are needed
– rarely used

● demand paging only brings pages into
main memory when really needed
– save memory
– many page faults during process start up
– often used

10

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

Placement Policy

● Determines where, in real memory, a
process piece (segment or page) should
reside

● Important in a segmentation-only system
– see memory allocation approaches and external

fragmentation

● Paging: MMU hardware performs address
translation
– placement policy is irrelevant

– in practice hw may impose some constraint

11

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

eviction policy

● the strategy used by the OS to choose pages
to take out of the RS of the processes

● a good page to evict will not be accessed in
the near future

● the eviction strategy is the way the OS uses
to predict the future

● long research history
– optimal, lru, fifo, clock, aging belady anomaly,

competitive on-line algorithms, etc....

– we will see many eviction strategies

not on
the book

12

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

eviction policy

● a good eviction strategy greatly speed up
whole system

● WARNING:
– trashing is still there!

– being smart allows to run more processes before
system goes thrashing

– anyway there always be a limit after that system
goes thrashing

● even for OPTimal eviction policy (see after)

not on
the book

13

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

cleaning policy

● before eviction of a modified (dirty) page this
has to be written to disk

● demand cleaning
– A page is written out only when it has been

selected for replacement
● precleaning

– Pages are written out in batches before
selection for replacement

– e.g. when disk is idle

14

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

cleaning policy and page buffering

● system always keeps a small amount of free
frames ready for re-assignment

● frames of evicted pages are added to one of two
lists
– free-clean frame list, if page has not been modified

– free-dirty frame list, otherwise

● frames in the clean are ready-for re-assignment

● frames in the dirty list are periodically written out in
batches and put into the clean list

15

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i Page Buffering

● suppose a page P is still contained in a
free-frame (either clean or dirty)

– nobody has overwritten it, yet

● P can be claimed again by its process
● P can be given to the process without any

access to secondary memory
● we have a (minor) page fault but with very

small overhead
– no disk reading

– just update data structures in main memory
● page buffer → RS of the process

16

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

page buffering as eviction
policys

● page buffering “corrects” simple eviction
policies implementing a sort of LRU
eviction strategy

– see after

17

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i Load Control

● Desipte good design (e.g. good eviction
policy) system may always trash!

● Determines the number of processes that
will be resident in main memory

● Too many processes will lead to thrashing
● Too few processes, cpu under utilized

18

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i Multiprogramming

trashing

19

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

Process Suspension

● Lowest priority process
● Faulting process

– This process does not have its working set in
main memory so it will be blocked anyway

● Last process activated
– This process is least likely to have its working

set resident

20

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

virtual memory vs. disk caching
● common objective

– keep in main memory only data and/or programs
that are really useful (frequently accessed)

● different action domain
– virtual memory: processes, pages, segments

– disk caching: files
ram disk

→ swap area

disk cache ←

virtual
memory

rarely used
processes,
pages or
segments

disk
caching

frequently used
parts of files

not on
the book

21

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

virtual memory vs. disk caching
● disk cache needs to take mostly the same

kinds of decisions as virtual memory
– fetch, placement, eviction, cleaning

– some files are used by more processes as some
pages are shared by more processes

– file parts are brought into memory “on demand”
as in demand paging

● common solution: memory-mapped files
● it is a new i/o primitive

– reads and writes are handled by ad-hoc caching

not on
the book

22

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

memory-mapped files

● a process can ask to see a part of a file as
memory
– unix syscall mmap(void *start_hint, size_t length,

int protection, int flags, int fd, off_t offset)

● no input during the syscall, just creation of a
new memory region

● page fault brings in memory what is needed
● cleaning write on disk what is changed
● reads and writes are not performed as syscall

but as processor memory access: a lot faster!

not on
the book

23

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

memory-mapped files

● several kinds
– read-only, shared, private, anonymous (mapped

on swap area)

● typical usage
– executable: demand paging, shared libraries

● mmap called by dynamic linker which is the only think
is loaded by execve syscall, it then mmap's the
executable and all shared libraries change them a bit
(private mmap)

– efficient i/o based applications: e.g. DBMS

not on
the book

24

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

memory-mapped files

● drawbacks
– need to read the page before writing

– real write is preferomed on "cleaning" or
unmapping of the file

● unsuitable when user should have control of when
something is written (eg. text editors, save...)

– file size change unsupported

not on
the book

25

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

an example

pizzonia@pisolo:~$ cat /proc/self/maps

08048000-0804f000 r-xp 00000000 08:03 6750220 /bin/cat

0804f000-08050000 rw-p 00006000 08:03 6750220 /bin/cat

08050000-08071000 rw-p 08050000 00:00 0 [heap]

b7dec000-b7ded000 rw-p b7dec000 00:00 0

b7ded000-b7f36000 r-xp 00000000 08:03 11796591 /lib/tls/i686/cmov/libc-2.7.so

b7f36000-b7f37000 r--p 00149000 08:03 11796591 /lib/tls/i686/cmov/libc-2.7.so

b7f37000-b7f39000 rw-p 0014a000 08:03 11796591 /lib/tls/i686/cmov/libc-2.7.so

b7f39000-b7f3c000 rw-p b7f39000 00:00 0

b7f55000-b7f57000 rw-p b7f55000 00:00 0

b7f57000-b7f58000 r-xp b7f57000 00:00 0 [vdso]

b7f58000-b7f72000 r-xp 00000000 08:03 7061540 /lib/ld-2.7.so

b7f72000-b7f74000 rw-p 00019000 08:03 7061540 /lib/ld-2.7.so

bfb78000-bfb8d000 rw-p bffeb000 00:00 0 [stack]

protection filename
mapped

inode
number

anonymous
mapping

device
offset in
the file

26

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

hw support for
virtual memory

27

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

Hw Support Needed for
Virtual Memory

● Hardware must support paging and/or
segmentation...
– ...plus indication of “page not resident”

● Operating system must be able to manage
the movement of pages and/or segments
between secondary memory and main
memory
– and decide which is the “best page” to evict

– we will see that we need a few additional “bits”
from the hw

28

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

page table for virtual memory

● Each process has its own page table
● Each page table entry contains the frame

number of the corresponding page in main
memory

● An additional bit is needed to indicate
whether the page is in main memory or not

● An additional bit is needed to indicate
whethere the page has been altered since it
was last loaded into main memory
– no change → the frame does not have to be

written to disk when page is evicted

29

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i Paging

30

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

address translation for paging

31

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

very big page tables

● what if a process use a limited number of
small parts of the page table?
– other parts may be not used at the moment or not

used at all

– a lot of memory wasted for unused page table
entries

● page tables should be treated largely as part
of the process image

● hierarchical page tables, inverted page tables

32

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

Two-Level Scheme for
32-bit Address (pentium like)

33

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

address translation in a two-level schema

34

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

Inverted Page Table (IPT)
● page number portion of a virtual address

and PID are mapped into a hash value
● the hash value points into the page table

entry
– entry contains info to check validity (pid and

page#) since it may not be related to the
process due to collision

● collisions are solved by chaining

– entry contains frame number

– as many entries as the number of frames

● used by PowerPC, UltraSPARC, and Intel
Itanium architecture

not on
the book

35

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

inverted page table

 -

Frame #

h

f1in general f≠h
h

not on
the book

PID

f2

36

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

updating the IPT (OS)
– the frame h

1
 is computed by hashing, read the table

entry for h
1

– if h
1
 is free

● update the entry h
1
with pid/pagenumber/framenumber

and set chain=0

– else
● choose a new entry h

2
 (e.g. by applying hashing again)

● if h
2
 is free, update the entry of h

2
with

pid/pagenumber/framenumber, set chain=0 and set
chain of the entry h

1
to point to the entry h

2

– if h
2
 is occupied, iterate again possibly producing

longer chains

not on
the book

37

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

reading the IPT (CPU)

● compute the hash h
1

● if the entry for h
1
contains the right pid and

page number, read the frame number from
this entry and perform memory access

● otherwise follow the chain until find the right
pid/pagenumber

● if chain end is reached, the page is not in
memory
– page fault or illegal memory access

not on
the book

38

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

IPT in real architectures

● in real architectures the IPT does not have a
frame# field

● the result of the hash function is the frame
number!

● this constrains OSes to select the frame
chosen by the hash function for hosting the
page...
– ...or to introduce a chain

not on
the book

39

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

IPT in real architectures

 -

f

not on
the book

PID

40

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

IPT in real architectures
● IPT are used when virtual address space is

really huge
● this happens in OS that...

– ... run on 64 bits hw architecture

– ... adopt a “single address space” model

not on
the book

41

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

SAS vs. MAS

● linux windows etc. are multiple address
space OSes (MAS-OS)
– each process occupies a distinct address spaces

● in single address space OSes (SAS-OS)
processes occupies distinct portions of the
same virtual address space
– no page table switching is needed when

switching process (but rights changes)

– sharing of memory is easier

– huge virtual address space is needed to host all
processes!

not on
the book

42

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

Translation Lookaside Buffer

● Each virtual memory reference can cause
two (or more) physical memory accesses
– One to fetch the page table entry
– One to read/write the data

● To overcome this problem a high-speed
cache is set up for page table entries
– Called a Translation Lookaside Buffer (TLB)

43

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

Translation Lookaside Buffer

● Contains page table entries that have been
most recently used

● it performs an associative mapping
between page numbers and page table
entries

44

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

direct vs. associative mapping

45

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

Translation Lookaside Buffer

● Given a virtual address, processor examines
the TLB

● If page table entry is present (TLB hit), the
frame number is retrieved and the real
address is formed

● If page table entry is not found in the TLB
(TLB miss), the page number is used to
index the process page table

46

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

Translation Lookaside Buffer

● if page is already in main memory the TLB is
updated to include the new page entry
– If not in main memory a page fault is issued and

OS is called

● TLB should be reset on process switch
– it caches entries of a certain page table.

– if the page table is changed (process
switch)TLB content became useless

47

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

address translation with TLB

48

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

lookup
algorithm

for
virtual

memory
paging

with
TLB

49

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

TLB and memory cache

50

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

Page Size

● Smaller page size, less amount of internal
fragmentation

● Smaller page size, more pages required per
process

● More pages per process means larger page tables
● Larger page tables means large portion of page

tables in virtual memory
● Secondary memory is designed to efficiently

transfer large blocks of data so a large page size is
better

51

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

Page Size

● Small page size, large number of pages will
be found in main memory

● As time goes on during execution, the pages
in memory will all contain portions of the
process near recent references. Page faults
low.

● Increased page size causes pages to
contain locations further from any recent
reference. Page faults rise.

52

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

typical paging behavior

typical

anomalous

53

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i Example Page Sizes

54

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i Segmentation

● Segments may have be unequal size
● segment size may dynamically increase

– may simplify handling of growing data
structures

● Allows modules of programs to be altered
and recompiled independently

● makes easy to share data among
processes

● implements protection mechanisms

55

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i Segment Tables

● one entry for each segment of the process
● each entry contains

– base address for the segment in main
memory

– the length of the segment

● A bit is needed to determine if segment is
already in main memory

● Another bit is needed to determine if the
segment has been modified since it was
loaded in main memory

56

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i Segment Table Entries

57

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

address translation for segmentation

58

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i segmentation and virtual memory

● segments are usually very big
● impractical to use with virtual memory
● obsolete

– segments are usually divided into pages

59

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

Combined Paging and
Segmentation

● Paging is transparent to the programmer
● Segmentation is visible to the programmer
● Each segment is broken into fixed-size

pages

60

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

Combined Segmentation
and Paging

61

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

address translation for segmentation/paging
systems

62

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

rss management and
eviction policies

63

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

rss management

rss allocation

eviction
scope

fixed variable

local bad usage of
main
memory

● new process: allocate a number of page frames
based on application type, program request, or
other criteria

● page fault: evict a page in the resident set of the
process that caused the fault

● Reevaluate allocation from time to time (see
working set)

global impossible ● Easiest to implement

● Adopted by many operating systems

● Operating system keeps list of free frames

● A free frame is added to resident set of a process
when a page fault occurs

● If no free frame, evict one page from any process

64

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

locality principle

● program and data references within a
process tend to cluster
– in time and space

● only a few pieces of the process address
space are needed over a short period of
time

● the behavior of a process in the imminent
future is likely to be the same as in the
recent past

● this suggests that virtual memory work
efficiently in all practical cases

65

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

principle of
locality

66

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

Replacement Policy

● Replacement Policy
– Which page is evicted?
– Page removed should be the page least likely to

be referenced in the near future
– Most policies predict the future behavior on

the basis of the past behavior

67

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

Replacement Policy

● Frame Locking
– If frame is locked, it may not be replaced
– Kernel of the operating system
– Control structures
– I/O buffers
– Associate a lock bit with each frame

68

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

pager or swapper

● the part of the kernel that manage the RS of
the processes is called pager or swapper.

● it implements the replacement policy
– page replacement is the most critical problem to

solve for virtual memory efficiency/efficacy

69

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

Basic Replacement
Algorithms/Policies

● Optimal policy
– Selects for replacement that page for which the

time to the next reference is the longest
– results in the fewest number of page faults

– no other policy is better than this

– Impossible to implement
● it needs to have perfect knowledge of future events!!!

70

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

optimal policy example

● page references stream:
2 3 2 1 5 2 4 5 3 2 5 2

● 3 frames are available

1 is no more referenced

2 is referenced after 5 and 3

×
× ×

FFFF
FF

71

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

Basic Replacement
Algorithms/Policies

● Least Recently Used (LRU)
– Replaces the page that has not been referenced

for the longest time
– By the principle of locality, this should be the

page least likely to be referenced in the near
future

– Each page is tagged with the time of last
reference. This would require a great deal of
overhead.

● timestamp update for each reference in memory!

72

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

LRU policy example

×
×

×
×

FFFF
FF

73

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

Basic Replacement
Algorithms/Policies

● First-in, first-out (FIFO)
– Treats page frames allocated to a process as a

circular buffer (queue)
– Pages are removed in round-robin style
– Simplest replacement policy to implement
– Page that has been in memory the longest is

replaced
– These pages may be needed again very soon

74

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

FIFO policy example

×
×

×
×

FFFF FF

75

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

Basic Replacement
Algorithms/Policies

● Clock Policy (second chance)
– one additional for each page bit called a use

bit
– set use=1

● when a page is first loaded in memory
● each time a page is referenced

– when it is time to replace a page scan the
frames...

● the first frame encountered with use=0 is
replaced

● while scanning if a frame has use=1, set
use=0

76

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

clock policy example

77

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

clock policy example

78

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

clock policy example

×
×

×
×

×
FFFF

FF

79

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

comparison of replacement
algorithms

80

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

CLOCK approximates LRU

● for each instance of CLOCK consider 2 sets
– A: recently used pages (pages with use=1)

– B: not recently used pages (pages with use=0)

● each time clock arm is moved a page is
demoted from A to B
– which one is quite arbitrary, depends on the

position of the arm

● a page is promoted from B to A when it is
accessed

not on
the book

81

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

CLOCK with “modified” bit
● we prefer to replace frames that have not

been modified
– since they need not to be written back to disk

● two bits are used (updated by the hardware)
– use bit

– modified bit

● frames may be in four states
– not accessed recently, not modified

– not accessed recently, modified

– accessed recently, not modified

– accessed recently, modified pr
ef

er
en

ce
 in

cr
ea

se
s

82

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

CLOCK with “modified” bit

1 look for frames not accessed recently and
not modified (use=0, mod=0)

2 if unsuccessful, look for frames not accessed
recently and modified (use=0, mod=1)

● ... while setting use=0 as in regular clock.

3 if unsuccessful, go to step 1

83

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

CLOCK with “modified” bit

84

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

aging policy
(from Tannenbaum)

● for each age keeps an age “estimator”
– the less is the value the older is the page

● it periodically sweeps all pages...
– scans use bits and modifies estimator for each page

● example: for page p shift right (that is divide by two) and
insert the value of use bit for p as leftmost bit

– it records the situation of the use bits for the last (e.g. 8) sweeps
● theoretically, more complex extimators may be used

– clear all use bits to record page usage for the next
sweep

● evict pages starting from older ones
– that is, those that have a lower estimator

not on
the book

85

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

aging policy
 version with right shift estimator

00010000

not on
the book value of use

bits for each
page at the
sweep instant

sweep sweep sweep sweep

0 5 0 5 0 5 0 5 0 5

“oldest” pages
at a certain
instant

time

86

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

estimator initialization

● when a page is loaded from the disk what is
its estimator?
– 00000000

– 00000001

– 10000000

– 11111111

not on
the book

87

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

estimator initialization

● resonably this page should remain in memory
since it has been accessed right now

● estimator should indicate a havily accessed
page (e.g. 11111111)

not on
the book

88

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

aging approximates LRU
● ages are quantized in time

– many references between two sweeps are
counted once

– aging policy is much less precise than LRU

● very old references are forgotten
– when an estimator reach zero it remains

unchanged

– impossible to discriminate among pages that
were not referenced for very long time

● LRU always maintains all the information it needs

not on
the book

89

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

working set

90

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

(memory) virtual time

● consider a sequence of memory references
generated by a process P
r(1), r(2),...

● r(i) is the page that contains the i-th address
referenced by P

● t=1,2,3,... is called (memory) virtual time for
P

it can be approximated by “process” virtual time
– memory references are uniformly distributed in

time

91

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

working set

● defined for a process at a certain instant (in
virtual time) t and with a parameter Δ
(window)
– denoted by W (t, Δ)

● W (t, Δ) for a process P is the set of pages
referenced by P in the virtual time interval
[t – Δ + 1, t]
– the last Δ virtual time instants starting from t

92

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

working set properties

 the larger the window size, the larger the
working set.

upper bound for the size of W

N number of pages in the process image

W t , Δ1⊇W t , Δ

1∣W t , Δ∣minΔ , N

93

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

working set

Δ

|W (t, Δ)|

N

W
 =

 Δ
● values of |W (t, Δ)| varying Δ for

t fixed and t>>N

94

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

working set: esempio

95

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

working set: andamento tipico nel
tempo

96

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

our goal

● ideally we would like to have always the
working set of each process in memory
(RS=WS, for a fixed Δ)

● WS (theoretical) strategy
– monitor the WS of each process

– update the RS according to the WS
● page faults add pages to WS (and to RS)
● periodically remove pages of the resident set that are

not in the WS. In other words, LRU with variable
resident set size.

97

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

few
page
faults

few
page
faults

few
page
faults

Δ'<<Δ

few
page
faults

more
page
faults

even
more
page
faults

working set strategy: problems

● optimal Δ?
– larger Δ → less page faults and larger |W|

– trade-off between number of page faults and WS
size!

– in any case the optimal value may depend on time

98

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

working set strategy:
implementation problems

● we need to maintain the history of the
reference for Δ
– more and more difficult as Δ increase

● it should be done in real-time
– keep a list of the memory reference in hw?

– count memory reference and mark pages with
the current value of the counter?

– in any case we need hw support

99

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

WS strategy approximation

● consider the frequency of page faults for a
process (PFF)

● if the RS size of the process is larger than the
WS size, PFF is low

● if the RS size of the process is smaller than
the WS size, PFF is high

● we can use PFF to estimate the relationship
between RS size and WS size

100

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

page fault frequency (PFF)

● if PFF is below a
threshold for P,
decrease RSS of P

● the whole system
will benefit

PFF threshold

RSS(P)

PFF(P)

101

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

page fault frequency (PFF)

● if PFF is above a
threshold for P,
increase RSS of P

● P will benefit

PFF threshold

RSS(P)

PFF(P)

102

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

PFF policy implementation

● maintain a counter t of the memory
references (memory virtual time can be
approximated with real time)

● on each page fault update estimation of PFF
● keeping the time t

1
 of the last page fault PFF≈1/(t-t

1
)

● keeping a first order estimator

● decide action on estimated PFF

PFF now=α
1
t−t 1

1−α PFF prev

α∈(0,1]

not on
the book

103

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

PFF policy implementation
● if PFF is above the PFF

threshold

– increse the RSS

● if PFF is below the PFF
threshold

– evict at least two pages from the resident set
● one to make space for the new one and one to reduce

the RSS

● in any case load in the page
● to avoid oscillations usually two distinct

thresholds are used: PFF
max

and PFF
min

– PFF
max

>PFF
min

104

©
 2

0
0

4
 –

 2
0

11
 w

ill
ia

m
 s

ta
lli

n
gs

,
m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

PFF policy

● it may be used with page buffering
● it performs poorly in transient periods

– RSS grows rapidly while changing from one
locality to another

	Virtual Memory
	Slide 2
	Slide 3
	Advantages of Breaking up a Process
	Hardware and Control Structures
	Execution of a Program
	Slide 7
	Thrashing
	Fetch Policy
	Placement Policy
	Slide 11
	Slide 12
	Cleaning Policy
	Slide 14
	Slide 15
	Slide 16
	Load Control
	Multiprogramming
	Process Suspension
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Support Needed for Virtual Memory
	Paging
	Slide 29
	Slide 30
	Slide 31
	Two-Level Scheme for 32-bit Address
	Slide 33
	Inverted Page Table
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Translation Lookaside Buffer
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Page Size
	Slide 51
	Slide 52
	Example Page Sizes
	Segmentation
	Segment Tables
	Segment Table Entries
	Slide 57
	sementation alone is obsolete
	Combined Paging and Segmentation
	Combined Segmentation and Paging
	Slide 61
	Slide 62
	Slide 63
	Principle of Locality
	locality picture
	Replacement Policy
	Slide 67
	Slide 68
	Basic Replacement Algorithms
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Comparison of Placement Algorithms
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104

