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motivations



customer’s problem

e acustomer (e.g., private company, public
administration, etc.) has several
geographically distributed sites and would like
to connect them into a unique IP network

— ideally it would like to have “wires” connecting its
sites



provider’s target

e a provider owns a network infrastructure with
many distributed PoPs (Points of Presence)
and would like to exploit it to offer IP level
connectivity services to its customers

— it would like to sell virtual wires (where IP packets
can flow) to its customers



provider and customers
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customer’s constraints

e keep the addressing unchanged
e jsolation from different customer's traffic
e quality of service



provider’s constraints

* low configuration and maintenance costs

* no performance penalties

— performance in the backbone should only depend
on traffic, not on the number of supported VPNs
or on the number of supported sites



vendor’s targets

e sell many routers
— possibly expensive carrier-grade machines

* move the focus from old (and already over-
sold) ATM & ATM-like technologies to new
(and with a growing market) technologies



meeting point

between customers, providers, and vendors

VPN — Virtual Private Network: behaves like a
physical private network, but it's virtual

implemented with

e MPLS — Multi Protocol Label Switching

(swapping): highly scalable, protocol-agnostic,
data-carrying mechanism



MPLS



MPLS in a nutshell

* MPLS vs OSI

IP

MPLS

Ethernet, Frame relay , ATM , PPP , etc

Physical Layer

picture from wikipedia



MPLS in a nutshell F

e MPLS packet

— encapsulates transported packets with an MPLS
header, containing one or more labels (label stack)

— each label stack entry contains 4 fields:
e |label value (20 bits)

e traffic class field for QoS and ECN - Explicit Congestion
Notification (3 bits)

e bottom of stack flag (1 bit)
o ttl (8 bits)



an interconnection scenario
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CE - customer edge routers
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PE — provider edge routers
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checkmate VPNs in three moves:
(1) make PEs reachable each other using IP,
(2) use BGP for announcing customer prefixes, and
(3) use MPLS for tunnels inside the backbone



1st move — IP reachability of the PE’s

e the first thing to do is to assign an IP loopback
address to each PE and to ensure IP
reachability among PEs in the backbone
— ignore all the other issues
— inside backbone use addresses that are not

announced outside (e.g. private addresses)

* loopback addresses are propagated by an IGP
— OSPF, IS-1S, ...



loopbacks of PEs
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a tempting solution

 implement VPNs using IP-in-IP tunnels (or
similar technologies) between PEs’ loopbacks

e drawbacks
— difficult to configure
— quadratic number of configurations

hence, this solution is discarded



2nd move — use BGP to announce
customer prefixes

e MP-BGP, a variation of BGP, is used

e each PE establishes an iBGP peering with all
other PEs
— usage of route reflectors for scaling

e customer’s networks are announced within
the peerings



BGP peerings
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3rd move — use MPLS for tunnels

e an IP packet of a customer, coming from a CE,
is encapsulated from the PE near to the source
into an MPLS packet

e the PE near to the source sends the packet to
the PE (loopback) near to the destination

e the IP packet traverses the backbone into an
MPLS envelope



MPLS labels and VPN’s

e two labels are used

— the internal one denotes the VPN: it is used in a
way similar to the VLAN tags of IEEE 802.1Q

* remains unchanged for the entire travel of the packet
from origin PE to destination PE

— the external one is used for label swapping

* is, in general, changed at each hop of the travel from PE
to PE

e afirst pop from the stack is done at the penultimate
router



how to find a route to loopbacks?

 who constructs the label-swapping data plane
of MPLS?

e in other words: in which way a P or a PE

knows which is the correct path to the target
PE (loopback)?

LDP — Label Distribution Protocol
is in charge of this



LDP

e LDP constructs the label switched paths (LSPs)
to reach each PE loopback by simply importing
this information from the IP data plane

— remeber 1st move: the IP data plane knows how
to reach loopbacks — it has been setup by an IGP



terminology and details



data- and control-planes

to understand how MPLS operates, let’s review
the mate-in-3

1st move: IP data-plane

— build IP routing tables (OSPF, IS-IS, static...)

— ensure reachability of PEs’ loopback interfaces

2nd move: BGP control-plane

— ensure that VPN prefixes are distributed among PEs

3rd move: MPLS data-plane
— build label switching tables (LFIBs) with LDP

— ensure availability of LSPs (Label Switched Paths) that
connect each pair of PEs



move #1: IP data-plane
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move #1: IP data-plane
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/LER1>show ip route
Codes: C— connected, O — OSPF
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move #1: IP data-plane
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/I_S.R2>show ip route
Codes: C — connected, O — OSPF
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move #1: IP data-plane
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IP data-plane: observations

e |P data-plane must ensure reachability of PEs’
loopback interfaces

— other prefixes (e.g., point-to-point links) are
useless for MPLS

e but they can be used for other purposes, e.g., network
management (telnet, ssh, SNMP, ...)

e any IGP (OSPF, IS-1S) can do the job

e static routes can do the job too, but they do
not handle network dynamics

— e.g., link failures



move #2: BGP control-plane
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move #2: BGP control-plane
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multiple routing tables on PEs

PEs need to distinguish each VPN
— there might be overlapping address space!

solution: multiple (virtual) routing tables

each customer port on PE is associated with a
particular routing table

— at provisioning time

ports on PE could be logical

— e.g. VLANs



Virtual Routing and Forwarding

(VRF)

* VVRF - Virtual Routing and Forwarding
— allows a router to have multiple forwarding tables
— each table is called a VRF instance

e each PE maintains multiple VRF instances

— one per set of directly attached sites with
common VPN membership

e each VRF instance contains:

— routes received from directly connected CE’s of
the sites associated with the VRF instance

— routes received from other PEs (via BGP)



VPN-IP addresses

 VVPN-IP address = Route Distinguisher (RD) + IP
address

— RD =Type + Provider’s Autonomous System
Number + Assighed Number

* no two VPNs have the same RD

e convert non-unique IP addresses into unique
VPN-IP addresses

e avoids conflicts if customers have overlapping
address spaces



move #3: MPLS data-plane
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move #3: MPLS data-plane

80.80.80.5/32 80.80.80.4/32
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In  Out
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LER1>show mpls forwarding-table

Prefix Iface

80.80.80.4/32 GE1/0
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move #3: MPLS data-plane

80.80.80.5/32
Torino PoP

Roma PoP
80.80.80.1/32

80.80.80.4/32
Milano PoP

-

14 LSR1>show mpls forwarding-table
In  Out Prefix Iface
[..]

20 20 80.80.80.4/32 GE2/0
[..]




move #3: MPLS data-plane
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LSR2>show mpls forwarding-table
In  Out Prefix Iface

[..]
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label spaces

* a LSR can receive the same incoming label from
multiple incoming interfaces

 what can happen in that case?
— forwarding is based only on the label
— |labels are unique router-wide
— (out_iface, out_label) = f(in_label)
per-platform label space

— forwarding is based on the label and the interface
which received the packet

— labels may be not unique router-wide
— (out_iface, out_label) = f(in_iface, in_label)
per-interface label space



label spaces: which one?

 which label space is used?
— it depends on the implementation
— sometimes it also depends on the interface
— not configurable

e example 1: Cisco IOS
— LC-ATM interfaces use per-interface label space
— other interfaces use per-platform label space

e example 2: JunOS

— AALS5 ATM interfaces use per-interface label space
— other interfaces use per-platform label space



putting it all together

a host of customerl in Rome sends a packet,
destined to 212.102.68.2 (located in Milan)

LER1 receives the packet from CE
— adds a MPLS label to mark it as belonging to VPN1

LER1 looks in its BGP table for VPN1
— finds next-hop 80.80.80.4 (LER2’s loopback)

LER1 looks in its LFIB for 80.80.80.4

— finds
LER1 ac

abel 20, interface GE1/0
ds another MPLS label (20) and

forwarc

s the packet on GE1/0



Example
80.80.80.5/32 80.80.80.4/32 @
Torino PoP Milano PoP ﬁ. @'

212.102.68.0/24

80.1.1.16/30

AS 100
80.0.0.0/8

212.102.67.0/24

S

Roma PoP = )
80.80.80.1/32 IP @




Example
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MPLS data-plane: observations

e MPLS data-plane must establish LSPs between
PEs’ loopback interfaces

e each Label Switching Router (LSR) uses its table to
swap the top MPLS label and forward the packet
to the next hop

e the penultimate router (LSR2 in the example)

pops the tag

— this way the next hop (PE) will only see the underlying
VPN label

— the PE uses the VPN label to distinguish among
different VPNs



does a Route Distinguisher suffice?

Route Distinguisher (RD) helps with
overlapping address spaces

— it makes every customer prefix unique
— it usually indicates the VPN

e sometimes sites need to be connected with a
VPN topology which is not a mesh

e if RDs were just used to indicate the VPN, this
would not be possible



complex VPN topologies

e Consider this network
— ellipse=site, ngle=VPN




Route Target

MPLS offers a flexible tool: Route Target (RT)

RT is an extended community in MP-BGP

— it can be used to indicate which routes should be
imported/exported into which VRF instance

supports complex VPN topologies

common strategy
— assign a RD for each site
— assign a RT for each VPN

— configure PE routers to import routes with specific
route targets



Route Target - example

 Route Distinguishers:
— Torino RD 100:1
— Milano RD 100:2
— Roma RD 100:3
— Bari RD 100:4

 Route Targets:
— VPN1 =>100:1000
— VPN2 =>100:2000
— VPN3 =>100:3000




Route Target - example

 PE at Torino
ip vrf siteTorino
rd 100:1
route-target import 100:1000
route target export 100:1000

e PE at Roma

ip vrf siteRoma

rd 100:3

route-target import 100:1000
route target export 100:1000
route-target import 100:2000
route target export 100:2000
route-target import 100:3000
route target export 100:3000




configuration

* configuring a LSR is straightforward:
host nane LSR1
mpl s | abel protocol |dp
| nterface LoopbackO
| p address 80. 80. 80. 2 255. 255. 255. 255
| nterface G gabitEthernetl/0
| p address 80.1.1.2 255. 255. 255. 252
mpls ip
| nterface G gabitEthernet2/0
| p address 80.1.1.5 255. 255. 255. 252

mpls ip
router ospf 10
network 80.0.0.0 0.255. 255.255 area 10



configuration

e configuring a PE router is a bit more tricky

 main building blocks

— move #1: loopback interface + speak IGP on non-
customer ports

— move #2: speak MPLS and LDP on non-customer
ports,

— move #3: full mesh of iBGP peerings
— move #4: map customer ports to VRF instances



configuration, step 1

e example: LER1 configuration
host nanme LERL

e speak IGP (in this example, OSPF)
router ospf 10
network 80.0.0.0 0. 255. 255. 255 area 10

e configure loopback interface
| nt erface LoopbackO
| p address 80. 80.80.1 255. 255. 255. 255



configuration, step 2

e use LDP to distribute MPLS labels
npl s | abel protocol |dp

e speak MPLS on non-customer ports
Il nterface G gabitEthernetl/0
| p address 80.1.1.1 255. 255. 255. 252

mpls Ip



configuration, step 3

e setup iBGP peerings with other PEs

router bgp 100

nei ghbor 80. 80.80.4 renote-as 100

nei ghbor 80. 80. 80. 4 updat e-source LoopbackO
nei ghbor 80.80.80.5 renote-as 100

nei ghbor 80. 80. 80.5 updat e-source LoopbackO
|

address-famly vpnv4

nei ghbor 80. 80.80.4 activate

nei ghbor 80. 80. 80.4 send-community both

nei ghbor 80.80.80.5 activate

nei ghbor 80. 80. 80.5 send-community both
exit-address-fam|ly

« activateisneeded for the vpnv4 address-family, otherwise routes won’t
be exchanged by default

e send-comunity bot his needed to enable standard and extended
communities



configuration, step 4

* map customer ports to VRF instances
| nterface G gabitEthernet2/0
I p vrf forwardi ng VPNL
| p address 212.102.67.1 255. 255.255.0
I nterface QG gabitEthernet3/0
I p vrf forwardi ng VPN2
| p address 193.193.172. 1 255. 255. 255.0

e define RDs and RTs for each VRF instance

Ip vrf VPNL
rd 100: 11
route-target export 100: 1000
route-target inport 100: 1000

Ip vrf VPN2
rd 100: 22
route-target export 100: 2000
route-target inport 100: 2000



configuration, step 4 (continued)

e announce VPN prefixes in BGP

router bgp 100
address-famly 1 pv4d vrf VPN1
redi stri bute connected
exit-address-famly
|
address-famly 1 pvd vrf VPN2
redi stri bute connected
exit-address-famly



MP-BGP in the wild

= Path attributes
[* ORIGIN: INCOMPLETE (4 bytes)
[ AS PATH: empty (3 bytes)
b MULTI_EXIT DISC: 6 (7 bytes)

[ II"'||"'E|_EIF-E|:|:- ANETE {? hyj_ﬁ}

< EXTENDED COMMUNITIES: (1l bytes)

P Flags: 0xcO (Optional, Transitive, Complete) [|g&~ Route Target

Type code: EXTENDED COMMUNITIES (16)
Length: 8 bytes

[+ Carried Extended communities Label StaCk'

- MP_REACH_NLRI (35 bytes) advertises the

P Flags: 0x80 (Optional, Non-transitive, Complet
Type code: MP_REACH NLRI (14) VPN label
Length: 32 bytes
VPN-IP addr

Address family: IPwv4 (1)

Subsequent address family ident} Labeled VPN Unigast (128)

— Network layer reachab®lity information (15 bytes)
4 Label Stack=24 [bﬂttﬂm)iHD=lBG:ll, IPv4=212.102.67.0/24




summary



low configuration and maintenance costs

 CE - customer edge routers

— don't need any special configuration; connected to a
PE router via IP (e.g. with a point-to-point connection)

e PE - provider edge routers

— simple configuration that depends only on the sites of
the VPN’s that are adjaceny to the PE

e P—provider routers

— simple configuration that does not depend on the
deployed VPN’s



forwarding efficiency

e PEs and Ps forward packet only depending on the
abels, that, in turn, depend only on the
oopbacks of the PEs

 the forwarding tables in the backbone contain
only one entry for each loopback

e much less than one entry for each customer
prefix




qos

e exploit traffic class field for enforcing QoS

— tos field of packets is encapsulated inside the
MPLS envelope and hence is not accessible while
the packet is traversing the backbone

— tos field is copied in the qos bits of MPLS label
(named EXP bits) at the PE



Internet

 many customers will also require Internet access
as well as VPN access

* more than one way to make this work (rfc4364)

— CE announces 0/0 to PE
e works even if the customer has another ISP for Internet

— Internet packets are forwarded natively (i.e., no MPLS)
— PEs leak Internet routes in each VRF

e a possible alternative

— 0/0is associated with a specific RT, VPNs needing
Internet access import it



caveats



MTU

careful with the MTU inside the backbone
— each MPLS label takes 4 bytes

— risk of fragmentation
e high impact on performance

IEEE 802.3 standard mandates support for one of
— 1500 bytes MTU
— 1504 bytes MTU (Q-tag)
— 1982 bytes MTU (“envelope” frame)
in practice, it is a matter of
— implementation
— hw support

nowadays most OSes do PMTU discovery, so having an Ethernet
MTU of 1492 bytes (allowing 2 MPLS labels) is not a big issue

— PPPoE also has a MTU of 1492 bytes — did you ever have problems?



TTL

 |PTTL field is encapsulated in an MPLS envelope,
hence not accessible from LSRs

— how do we prevent infinite loops in MPLS?

e recall MPLS label has its own TTL field

— when the PE encapsulates the IP packet, it copies the
TTL value in the newly added MPLS label

— LSRs decrement the TTL in the label

— when the label is popped, the TTL is copied onto the
next label

— when the bottom-of-stack label is popped, the TTL is
copied onto the IP field



