Industrial control systems malware and integrity

Results from the Preemptive research project

Critical Infrastructures (CI) and Industrial Control Systems (ICS)

- CI are infrastructures that are essential for the functioning of a society and its economy
 - e.g., electricity, gas, telecommunications, water, dams, nuclear plants, public health, transportation, financial services, food...
- CI usually rely on Industrial Control Systems (ICS)
 - different vulnerabilities with respect to regular IT

Industrial Control Systems (ICS)

- the organization also have a regular IT network for administration, sales, etc.
 - ... with regular security problems

The Preemptive research project

- Preemptive: "Preventive Methodology and Tools to Protect Utilities"
 - focus on cybersecurity of "utilities": companies managing electricity, water, gas
 - objectives
 - -prevention and detection
 - -methodology and technology
 - -final testbed

The Preemptive research project

- Preemptive is founded by the EU (FP7)
 - -12 european (+israel) partners(5 research + 7 industry)
 - -6 "end users" (utility operators)
 - -three years (ends Feb 2017)
- many results
 - a specific risk assessment methology
 - many specific IDS/IPS tools
- we focus on the results of uniroma3

ICS Security: specific aspects

- very peculiar technology
 - SCADA-related software
 - embedded system
 - -usually not mastered by regular hacker (good)
- built for safety not for security
 - not to be resilient to malicious software attacks (bad)
- old systems, rarely patched/updated (bad)
 - patching is costly
- elective targets for specific attackers
 - terrorists, opposing governments, intelligence agencies (bad)
 - much larger resources than regular hackers (bad)
 - Advanced Persistent Threats, APTs (bad)

parentesi su malware e APTs

malware

- qualsiasi software che si comporti in modo illecito o malevolo nei confronti dell'utente
- tipicamente associati a un meccanismo di propagazione
 - sociale o tecnologico
- moltissime tipologie e varianti
 - classificazione molto complessa
 - più che una classificazione del software si classificano le tipologie di "comportamento"
 - virus, trojan, worm, rasomware, AdWare, SpyWare, ecc.
 - es. un malware può essere contemporaneamente trojan e virus

propagazione

fonte Microsoft, SIRv11 2011

zombies e botnet

- alcuni malware rimangono in attesa che il sistema sia utilizzato da un hacker (installano una backdoor)
 - tipicamente trojan, virus o worm
- un sistema infetto è detto zombie
- una rete di zombies comandabili coerentemente è detta botnet
- spesso gli zombies sono comandati mediante Internet Relay Chat (IRC botnet)
- usi
 - 50-80% dello spam viene da zombies
 - risparmio di banda, indirizzi diversi confondono gli antispam
 - Distribute DoS (attacchi famosi a Yahoo, eBay, ecc)
 - click frauds (siti con annunci "pay per click")
 - hosting di siti di phishing
- fonte: http://en.wikipedia.org/wiki/Zombie_computer

Cybercrime Black Market and ecosystem

the market

Fonte: kaspersky (2009)

- botnet: \$50 to thousands of dollars for a continuous 24-hour attack.
- Stolen bank account details vary from \$1 to \$1,500 depending on the level of detail and account balance.
- Personal data capable of allowing the criminals to open accounts in stolen names costs \$5 to \$8 for US citizens; two or three times that for EU citizens.
- A list of one million email addresses costs between \$20 and \$100;
 spammers charge \$150 to \$200 extra for doing the mailshot.
- Targeted spam mailshots can cost from \$70 for a few thousand names to \$1,000 of tens of millions of names.
- User accounts for paid online services and games stores such as Steam go for \$7 to \$15 per account.
- Phishers pay \$1,000 to \$2,000 a month for access to fast flux botnets
- Spam to optimise a search engine ranking is about \$300 per month.
- Adware and malware installation ranges from 30 cents to \$1.50 for each program installed. But rates for infecting a computer can vary widely, from \$3 in China to \$120 in the US, per computer.

market participants - levels

Different Levels of Participants in the Underground Market

RAND - Markets for Cybercrime Tools and Stolen Data, 2014

evolution

Advanced Persistent Threats (cyberwar)

- organizzazioni (es. governi) capaci di minacciare continuativamente un obiettivo
 - con mezzi informatici ma non solo
- obiettivi
 - compromissioni di sistemi industriali (stuxnet)
 - primo rootkit per sistemi SCADA
 - reperimento di informazioni (flame)
 - screenshot, voice recording, remote control
- virus sofisticati
 - sfruttamento di vari zero-day threats
 - sfruttamento di collisioni MD5
 - infezioni su varie tecnologie (es. bluetooth, PLC, scada)

Advanced Persistent Threats

peculiarities of APTs

- malware usually operated by very big organizations
- no direct profit but political or market advantages
- leverage insiders for info gathering and initial attack
- knowledgeable
 - about specific industrial processes
 - about deployed countermeasures (e.g. antivirus evasion)
- trade time for stealth (slow attacks)
- based on zero-days
 - -e.g. procured on the black market
 - leverage public cloud facilities

famous APTs

- Stuxnet (2010)
 - target: iranian uranium enrichment facilities
 - spreads through USB storage and regular IT systems
 - specifically infects SCADA servers and embedded systems
 - change control parameters of centrifuges to induce excessive vibration
 - hide from antivirus
 - exploits several new vulnerabilities
 - cryptographic attack
- others: Duqu (2011), Flame (2012), Duqu 2.0 (2015)
- apt.securelist.com (kaspersky)

fine parentesi

Integrity techniques for ICS protection and USB security

two "realms"

Regular IT

Industrial Control System

problem setting

- regular IT: considered insecure
- ICS: must be protected from APTs that can easily reach regular IT
- ICS loosely connected
 - USB memory sticks are used
- USB memory are used promiscuously
- USB memory is a spreading vector for APT

idea

- use the Biba integrity model
 - high integrity level: ICS
 - low integrity level: regular IT
- for USB memory, we cannot rely on file system access control
 - why???....

filesystem access control is useless

- USB sticks are used promiscuously on untrusted computers (e.g., employee devices)
- access control is not trusted in these devices
- we cannot be sure that nobody tamper with critical data
- hence, we cannot use file system access control
 - we use cryptographic methods: signature

problems for USB filesystem signature/integrity

- composite data
 - what about deletion or reverting to previous version of a single file?
- common approaches
 - signing each file separately
 - does not detect file deletion/restoration
 - inefficient for large files
 - signing each block separately
 - does not detect restoration of single blocks
 - signing the whole filesystem
 - effective tampering detection
 - highly inefficient: O(n) time for update, O(n) time for check, where n is the total amount of data stored, we aim at have O(m) for update and check, where m is the data read or written

parentesi: merkle hash tree

Authenticated Data Structure (ADS)

- a data structure that speed up hash computation and checks
- useful when
 - the dataset the hash is computed on (n) is large
 - the changed data m are small (m<<n)
 - the retrieved data m are small (m<<n)</p>
- typical hypothesis
 - client of an ADS can keep a hash (constant size) in a trusted environment
 - client of a ADS can use a large amount of untrusted storage

ADS typical usage

- by using an ADS, client can detect tampered data before they are used
 - e.g., before they cause problem in business processes

- typical application
 - cloud storage
 - legal proof of correctness or tampering
 - service level agreement verification
 - backup check

many different ADSes

- Easy example: authenticated list
 - each element e contains an info e.x and a cryptographic hash e.h and pointers e.prev e.next
 - $-e.h = hash(e.prev.h \mid e.x)$
 - efficiency: append O(1), check O(n)
- Merkle Hash Tree
- Authenticated Skip Lists

static and dynamic

MHT: how does it work

- a (balanced) tree
- each node v contain a hash for the data associated with leaves below v
- client keep only the root hash in a trusted

h(.) is a cryptographic hash function

MHT: integrity proof

- proof for m_i :
 - consider the path from m_i to root
 - the proof is made of the siblings of the nodes in that path
- example: proof for m₂
 - $v_{2,0} v_{1,1}$
- check:
 - assume that client has a trusted version of the root hash (RH)
 - $RH = h(h(\mathbf{v}_{2,0} | h(m_2)) | \mathbf{v}_{1,1})$
 - compare RH == trusted RH

MHT: check semantic

 client is sure that the data of the reply comes from the dataset associated with the trusted version of the root hash

MHT: efficiency

- for a balanced MHT creating and checking a proof is efficient
- let n the size of the stored data
- length of the proof is O(log n)

MHT: update

- we have to update m_i to a new version m_i
 - root hash will change as well as several internal hashes
- procedure
 - compute proof p for m_i and check it
 - update the hashes of the path to root starting from m_i using content of p
 - update trusted root hash

MHT: update

• example: update m_2 to a new version m_2 '

O(log n) time for balanced trees

ADS use case: check of cloud behaviour

- client stores root hash locally
- ADS can be stored in cloud too
- ADS can be applied to regular cloud storage
 - i.e., storage might not know about ADS

ADS authenticated query protocol

ADS authenticated update protocol

security remarks

- tampering with the ADS cannot lead to undetected data tampering
- to break the protection a has collision must be found

- if an ADS is lost, it can be re-created from data
- essentially an ADS is only a speed-up tool

fine parentesi

efficient filesystem integrity

- by using ADS we obtain
 - integrity check that detect any kind of tampering
 - efficiency comparable to any index data structure
- a MHT for integrity of files and directories can be represented by means of files and directories
 - ADS stored in the same USB storage

architecture of the Host Integrity System

- two realms: critical and regular
- only critical machines are equipped with an "Integrity Manager"
 - checks that only genuine data are read
 - write proof that data are genuine
 - based on hash and signature
- USB memory sticks
 - any regular hardware
 - a secure zone is identified (a directory)
 - critical machines can only read from secure zone

special operations

- processes in critical machines read and write USB memory sticks through the Integrity Manager
 - redefinition of system call semantic for ADS and root hash handling

other elements

- each host M a private/public key
- Certification Authority (CA)
- root hash is signed by private key and written in the memory stick
 - along with certificate of M
- possible support of many secure zones
- initial creation of an empty secure zone

architecture

Critical Machine (M)

architecture

Usb Memory stick

gatekeeper

- distributed implementation of the Biba model (no need for networking)
- how to import data/software into the critical realm? special machine: gatekeeper

gatekeeper

- like a critical machine but can read any data (and write it into a secure zone)
- can implement a "complete mediation" for check possibly malicious data before they enter into the critical realm

security remarks

- restoring of a previous backup is not considered an attack
- USB memory stick is considered passive
 - no protection against firmware attacks (unless they show tampered data)

USB firmware attack: BadUSB

- a malicious USB stick declare to be a keyboard
- when inserted into a PC start to "type" commands possibly
 - downloading software (malware)
 - executing software
 - changing configurations
 - typing to create malicious scripts and execute them

protection: USBCheckIn

- it is an hardware that prevents "malicious typing"
- when a USB device pretend to be a keyboard the user is asked to type specific codes
- it is a sort of Captcha for USB devices

USBCheckIn: startup

USBCheckIn: keyboard authorization

