
©
 2

0
1

8
-2

0
2

2

m

a
u

ri
z
io

p
iz

z
o

n
ia

 –
c
y
b

e
rs

e
c
u

ri
ty

 –
u

n
ir

o
m

a
3

1

smart contracts

©
 2

0
1

8
-2

0
2

2

m

a
u

ri
z
io

p
iz

z
o

n
ia

 –
c
y
b

e
rs

e
c
u

ri
ty

 –
u

n
ir

o
m

a
3

spending the bitcoins of a utxo:
the easy story

• this is similar to a challenge response protocol

• txin of a transaction tx provides...

– public key whose hash should match the address in
txout

– signature of a string X

• X is a string derived from...
– tx where signatures are omitted

– the destination address contained in referred txout

2

©
 2

0
1

8
-2

0
2

2

m

a
u

ri
z
io

p
iz

z
o

n
ia

 –
c
y
b

e
rs

e
c
u

ri
ty

 –
u

n
ir

o
m

a
3

the reality: the conditions for
unlocking funds can vary

• only one subject can spend

• anyone can spend

• nobody can spend (logging)

• M-of-N subjects should agree to spend

• one subject can spend after a certain
amount of funds are accumulated
(e.g., for croudfunding)

• one (or many) can spend after a certain
time

• etc…

• a combination of the above 3

©
 2

0
1

8
-2

0
2

2

m

a
u

ri
z
io

p
iz

z
o

n
ia

 –
c
y
b

e
rs

e
c
u

ri
ty

 –
u

n
ir

o
m

a
3

bitcoin scripts
• locking script (a.k.a. scriptPubKey)

– associated with txout

– states conditions to spend the output (a “question”)
• usually it specifies at least the (hash of) a public key

• unlocking script (a.k.a. scriptSig)

– associated with txin

– should «match» the conditions of the corresponding
txout (the “answer”)

• usually it contains a signature

• the output of the unlocking script (answer) is
used as input for the locking script (question)
– essentially: (1) exec the unlocking script (2) keep the

stack and exec the locking script (3) success if top of
the stack is not zero and no operation failed

• executed as part of consensus checks 4

©
 2

0
1

8
-2

0
2

2

m

a
u

ri
z
io

p
iz

z
o

n
ia

 –
c
y
b

e
rs

e
c
u

ri
ty

 –
u

n
ir

o
m

a
3

the bitcoin scripting language

• proprietary

• simple

• stack-based

• no state

• same execution on all nodes

• no iteration instructions
– Turing incomplete

5

©
 2

0
1

8
-2

0
2

2

m

a
u

ri
z
io

p
iz

z
o

n
ia

 –
c
y
b

e
rs

e
c
u

ri
ty

 –
u

n
ir

o
m

a
3

the bitcoin scripting language

• read and executed from left to right

• constants push themselves onto the stack

• arithmetic: ADD, SUB, …

• stack: DUP, DROP, ROT, 2DUP, …

• flow: IF, ELSE, ENDIF, VERIFY, RETURN, …

• crypto: HASH160, SHA1, CHECKSIG,
CHECKMULTISIG …

• time: CHECKLOCKTIME,

https://en.bitcoin.it/wiki/Script

6

©
 2

0
1

8
-2

0
2

2

m

a
u

ri
z
io

p
iz

z
o

n
ia

 –
c
y
b

e
rs

e
c
u

ri
ty

 –
u

n
ir

o
m

a
3

examples
• anyone-can-spend

unlock: (empty)

lock: TRUE

• provably-unspendable, just to store data
lock: RETURN <data max 80 bytes> (never considered an UTXO for efficiency)

• pay-to-public-key-hash (P2PKH, the “standard” one)

unlock: <sig> <pubKey>

lock: DUP HASH160 <pubKeyHash> EQUALVERIFY CHECKSIG

• A or B can spend
unlock for A: <sig> <ApubKey> <1>

unlock for B: <sig> <BpubKey> <0>

lock: IF DUP HASH160 <ApubKeyHash>

ELSE DUP HASH160 <BpubKeyHash> ENDIF

EQUALVERIFY CHECKSIG

• freezing funds until a time in the future
unlock: <sig> <pubKey>

lock: <expiry time> CHECKLOCKTIMEVERIFY DROP

DUP HASH160 <pubKeyHash> EQUALVERIFY CHECKSIG 7

©
 2

0
1

8
-2

0
2

2

m

a
u

ri
z
io

p
iz

z
o

n
ia

 –
c
y
b

e
rs

e
c
u

ri
ty

 –
u

n
ir

o
m

a
3

smart contracts
• each one of these scripts is called smart contract

– it is not a “legal contract”, it is just a script!

– they may realize/support legal contracts
• it might be recognized as a contract, if parties agree that

“code is law”, since the execution is checked by consensus

• but in Italy they do are recognized as legal contracts by
Legge 11 feb. 2019 n.12

• it enables to use the bitcoin blockchain for other
purposes:

– additional “coins” or tokens
• …that are distinct from bitcoin, whose transactions are

recorded in the bitcoin blockchain

• obsoleted by the rising of the transaction fees

– record of transaction for generic assets

– settlement of off-chain transactions
• so called “payment channels”, see the Lightning Network 8

©
 2

0
1

8
-2

0
2

2

m

a
u

ri
z
io

p
iz

z
o

n
ia

 –
c
y
b

e
rs

e
c
u

ri
ty

 –
u

n
ir

o
m

a
3

bitcoin for smart contracts: limits

• high fees

• limited expressiveness
– Turing incomplete

• slow

• smart contracts have no persistent state
– the only stored output is in utxo’s

9

©
 2

0
1

8
-2

0
2

2

m

a
u

ri
z
io

p
iz

z
o

n
ia

 –
c
y
b

e
rs

e
c
u

ri
ty

 –
u

n
ir

o
m

a
3

Ethereum

• Ethereum is a DLT targeted to smart contracts

10

Bitcoin Ethereum

Turing

completeness

NO YES

persistent values

for scripts

not supported, complex,

just UTXO, usually need

external code

contracts accounts can store

variables, easy to retrieve

blockchain

contains

just transactions current status

language simple stack based high level language compiled

to a bytecode for the Ethereum

Virtual Machine

block time 10 minutes 20 seconds

consensus PoW PoW->PoS?

block size limit 1MB adjusted dynamically, no limit

©
 2

0
1

8
-2

0
2

2

m

a
u

ri
z
io

p
iz

z
o

n
ia

 –
c
y
b

e
rs

e
c
u

ri
ty

 –
u

n
ir

o
m

a
3

accounts

• in bitcoin the lock script states what should
be provided to unlock funds
– it is a feature of every UTXO

– some standard scripts (P2PKH, 2-of-3, etc.)

– potentially infinite kinds of UTXO
• depending on the lock script

• in Ethereum we have just two kinds of
accounts
– Externally Owned Accounts (EOA)

– contract accounts

11

©
 2

0
1

8
-2

0
2

2

m

a
u

ri
z
io

p
iz

z
o

n
ia

 –
c
y
b

e
rs

e
c
u

ri
ty

 –
u

n
ir

o
m

a
3

contracts (accounts)

• each contract account is associated with a
software object
– very much like a software object of OOP

• it has a state
– persisted in the blockchain

• it has operations
– to be called externally by a transaction or by

another smart contract (in the same
transaction)

12

©
 2

0
1

8
-2

0
2

2

m

a
u

ri
z
io

p
iz

z
o

n
ia

 –
c
y
b

e
rs

e
c
u

ri
ty

 –
u

n
ir

o
m

a
3

operations

• an operation is executed within a
transaction

• it can…
– change the state of the object

– take parameters

– return values

• essentially they are the methods of the
object/contract

13

©
 2

0
1

8
-2

0
2

2

m

a
u

ri
z
io

p
iz

z
o

n
ia

 –
c
y
b

e
rs

e
c
u

ri
ty

 –
u

n
ir

o
m

a
3

accounts

EOA contract accounts

associated

private keys

yes no

balance yes yes

other persistent

values/variables

no yes

it also stores EVM bytecode

as a transaction

recipient…

• can receive ETH • can receive ETH

• always executes an

operation (possibly the

fallback one)

as a transaction

sender…

• can send ETH

• can call operations on a

contract

contracts cannot really send

transaction but

• can call operations on

another contract

in the same received

transaction

• can send ETH
14

©
 2

0
1

8
-2

0
2

2

m

a
u

ri
z
io

p
iz

z
o

n
ia

 –
c
y
b

e
rs

e
c
u

ri
ty

 –
u

n
ir

o
m

a
3

transactions fields

• (sender address)

• recipient address

• value (exchanged ETH)

• data

• nonce (increasing, to avoid replay attack)

• gas price

• gas limit

• max fee = gas price * gas limit

– actual fee depends on the executed code

– if a tx runs “out of gas”, state changes are reverted,
but fee is taken anyway

15

©
 2

0
1

8
-2

0
2

2

m

a
u

ri
z
io

p
iz

z
o

n
ia

 –
c
y
b

e
rs

e
c
u

ri
ty

 –
u

n
ir

o
m

a
3

contract lifecycle

• written in a high-level language

• compiled to EVM bytecode

• deployed

– transaction sent to special address 0x0 and bytecode
as data

• operations are called on the contract
– as part of tx’s, which may update its state, increase

balance, call other contracts (within the same tx, tx
sender pays), etc.

• cannot be deleted, but the contract can destruct
itself
– sending current balance to a designated address

16

©
 2

0
1

8
-2

0
2

2

m

a
u

ri
z
io

p
iz

z
o

n
ia

 –
c
y
b

e
rs

e
c
u

ri
ty

 –
u

n
ir

o
m

a
3

a solidity example

17

• anyone can withdraw funds from this
contract

©
 2

0
1

8
-2

0
2

2

m

a
u

ri
z
io

p
iz

z
o

n
ia

 –
c
y
b

e
rs

e
c
u

ri
ty

 –
u

n
ir

o
m

a
3

evolution

• state variables

• constructors

• inheritance

• custom
modifiers

• assertions

• events

18

©
 2

0
1

8
-2

0
2

2

m

a
u

ri
z
io

p
iz

z
o

n
ia

 –
c
y
b

e
rs

e
c
u

ri
ty

 –
u

n
ir

o
m

a
3

simple things might be complex

• for example, requiring a multisignature to
unlock funds

19

©
 2

0
1

8
-2

0
2

2

m

a
u

ri
z
io

p
iz

z
o

n
ia

 –
c
y
b

e
rs

e
c
u

ri
ty

 –
u

n
ir

o
m

a
3

libraries

• libraries can be imported in a project as
included code…

• …or from the blockchain!
– …if you trust it!

– operations can call other operations in other
smart contracts

– the execution occurs in the same transaction,
paid with the gas for that transaction

20

©
 2

0
1

8
-2

0
2

2

m

a
u

ri
z
io

p
iz

z
o

n
ia

 –
c
y
b

e
rs

e
c
u

ri
ty

 –
u

n
ir

o
m

a
3

remix
• a basic web based editor, emulator,

debugger

• https://remix.ethereum.org

21

©
 2

0
1

8
-2

0
2

2

m

a
u

ri
z
io

p
iz

z
o

n
ia

 –
c
y
b

e
rs

e
c
u

ri
ty

 –
u

n
ir

o
m

a
3

contracts security

• contracts are usually not very long

• writing contracts is easy

• writing secure contracts is difficult
– solidity/EVM semantic may be subtle

– mistakes may cost a lot of money!
Atzei N. et al. A survey of attacks on ethereum smart contracts.
International Conference on Principles of Security and Trust 2017

22

©
 2

0
1

8
-2

0
2

2

m

a
u

ri
z
io

p
iz

z
o

n
ia

 –
c
y
b

e
rs

e
c
u

ri
ty

 –
u

n
ir

o
m

a
3

intrinsic security features

• when you ask a centralized server to
execute something, you trust the server

• when you ask a blockchain for a smart
contract, you are sure that the execution
is not malicious

• however, input and output (and state, for
Ethereum) are essentially public

• Integrity: OK, availability: OK,
confidentiality: NO

23

©
 2

0
1

8
-2

0
2

2

m

a
u

ri
z
io

p
iz

z
o

n
ia

 –
c
y
b

e
rs

e
c
u

ri
ty

 –
u

n
ir

o
m

a
3

references

• A. M. Antonopoulos – Mastering Bitcoin

• A. M. Antonopoulos, G. Wood - Mastering
Ethereum

24

©
 2

0
1

8
-2

0
2

2

m

a
u

ri
z
io

p
iz

z
o

n
ia

 –
c
y
b

e
rs

e
c
u

ri
ty

 –
u

n
ir

o
m

a
3

25

